Breathe Through Your Nose

This post is inspired by “Following Your Nose: Nasal Function and Energy” by Rudolph Ballentine (in Science of Breath, 1992).

The nose is the most restricted part of the respiratory tract and creates 150% more work than mouth breathing. So why should we breathe through our noses? Because the nose fulfils several crucial respiratory functions that our mouth is unable to fulfil. As air passes through the nose it’s filtered, humidified (98% humidity) and warmed (32-34 degrees C). This prepares it for passage to the lungs. When we breathe out through the nose, much of the moisture and heat is retained within the nose to be transferred to the next in-breath.

As we breathe deeply through our nose, mechanoreceptors on epithelial cells are activated and this results in the release of nitric oxide. Nitric oxide leads to bronchodilation and vasodilation which in turn increase circulation and the delivery of oxygen. Nitric oxide also has antimicrobial properties and promotes mucus production and ciliary movement which facilitate the evacuation of debris and microbes.

Apparently, the shape of our nose depends on the climate in which our ancestors evolved: a long big nose in cooler and dryer climates and a wide nose with open nostrils in warm, moist climates.

“Yesterday I was clever,

so I wanted to change the world.

Today I am wise,

so I am changing myself.”

Rumi

Nutrition, Immunity and COVID-19

Our immune system protects us from pathogens like viruses, bacteria, cancerous cells, etc. and it can be separated into 2 distinct branches: the innate immune system and the adaptive immune system. Our innate immune system uses cells such as macrophages, neutrophils and mast cells to mount a fast, generic response to pathogens. Inflammation is the hallmark of the innate immune system. On the other hand, the adaptive immune system uses T cells, B cells and natural killer cells to mount a slow, targeted response to pathogens. It’s the adaptive immune system that’s responsible for life-long immunity to certain diseases. In practice, the 2 branches interact to provide a comprehensive immune response.

In a recent article, Butler and Barrientos (2020) summarised the interactions between diet, immunity and COVID-19. They state that the typical western diet (high in saturated fats, refined carbohydrates and sugars, and low in fibre, unsaturated fats and antioxidants) “significantly impairs adaptive immunity while ramping up innate immunity, leading to chronic inflammation and severely impairing host defence against viral pathogens.

The authors note that “T and B cell counts were also significantly lower in patients with severe COVID-19; thus, there could be a potential interaction between western diet consumption and COVID-19 on adaptive immunity impairment.” They suggest the higher rates of obesity and diabetes among ethnic minority populations may partly account for the health disparities seen in response to COVID-19.

Butler and Barrientos conclude “that individuals refrain from eating foods high in saturated fats and sugar and instead consume high amounts of fibre, whole grains, unsaturated fats, and antioxidants to boost immune function.”

Early Feeding Improves Pre-Diabetes and Blood Pressure

About a year ago Sutton et al. published a study that showed that intermittent fasting has benefits that are independent of food intake and weight loss. Their trial tested the effects of 5 weeks of “early time-restricted feeding” (eTRF) on 8 men with pre-diabetes. The subjects were asked to start breakfast between 6:30-8:30 and to eat their 3 meals in a 6-hour window with dinner before 15:00. They were fed enough food to maintain weight. The control group had similar meals but within a 12-hour feeding window. Five weeks of eTRF significantly improved insulin levels, insulin sensitivity, blood pressure and oxidative stress levels. The blood pressure improvements were particularly dramatic – morning levels of both systolic and diastolic blood pressure were reduced by about 10 mm Hg each.

Some of the benefits of eTRF are believed to originate from eating in alignment with our internal biological clocks which are primed for feeding early in the day. The authors state that “in humans, insulin sensitivity, beta cell responsiveness, and the thermic effect of food are all higher in the morning than in the afternoon or evening, suggesting that human metabolism is optimized for food intake in the morning”. Fortunately eTRF lowers the desire to eat in the evening!

Slow Breathing Regulates High Blood Pressure

Several years ago I wrote a few articles showing that exercise, yoga and other strategies were helpful at regulating high blood pressure (BP). Even small reductions in blood pressure can significantly reduce the risk of heart disease, stroke and kidney failure. The risks associated with hypertension are continuous – this means that with each 2mm Hg rise in systolic BP there is an associated 7% increase in mortality from heart disease and 10% increase in mortality from stroke.

I recently came across a few studies that have shown that paced, slow breathing can significantly decrease blood pressure in patients with hypertension. Joseph et al. (2005) demonstrated that paced breathing at 6 breaths/min for only a couple of minutes was able to decrease systolic BP by more than 8mm Hg and diastolic BP by about 5mm Hg. Similarly, Li et al. (2018) found that paced breathing at 8 breaths/min for 5min lowered systolic BP by about 4mm Hg and diastolic BP by over 8mm Hg. Because the slow breathing was only tested for a few minutes…the long-term effects of daily practice remain to be determined.

For those that are interested in giving it a go, I would recommend wearing loose-fitting clothing and either lying down or sitting back into a chair in a warm environment. Aim to progressively slow your breathing down to 5-7 breaths/min (there are several apps that can help pace your breathing). Breathe with an equal inhalation and exhalation. It may take several sessions to comfortably slow your breath to 5-7 breaths/min…take your time. Enjoy for 15-20min a day!

Ever since happiness heard your name,

it has been running through the streets trying to find you...

…let it catch up.”

Hafez (modified by Joseph Goldstein)

Meal Times Crucial For Weight Loss

A few months ago Lopez-Minguez et al. reviewed studies looking at the effect of meal times on obesity and metabolic risk. Their findings are summed up in the following points:

  • skipping breakfast is linked to obesity
  • eating a large breakfast (within 2hrs of waking) decreases the probability of being obese by 50%
  • a late lunch (after 3pm) hampers weight loss and has a negative effect on the diversity and composition of our microbiota
  • a late dinner (less than 2hrs before bedtime) decreases glucose tolerance
  • eating a large, late dinner (less than 2hrs before bedtime) leads to a 5-fold increase in the risk of becoming obese
  • the timing of breakfast seems to be hereditary whereas the timing of dinner is mainly cultural

There may be some truth in the following quote by Adelle Davis.

Eat breakfast like a king, lunch like a prince and dinner like a pauper

As well as getting the timing right obviously!

Could Sunlight Aid Weight Loss?

Nayak et al. have recently published the findings of their fascinating research into the effects of light on fat metabolism in mice.

Animals have adapted to use light in various ways. The most obvious is our sense of sight – it creates images in the brain through the detection of photons by light sensitive proteins (opsins) in the retina. But there are also non-visual ocular photoreceptors that help regulate our circadian rhythms (body clock), pupillary light reflex and eye development. Interestingly, light sensitive proteins are also found outside the eye. Opsins in our skin can regulate the circadian clock and others can influence blood vessel dilation. In birds, it’s photoreceptors deep within the brain that regulate seasonal breeding behaviour.

There have been suggestions that adipocyte (fat cell) function may be modulated by light. White fat (WAT) acts as a storage site whereas brown fat (BAT) generates heat through a process called non-shivering thermogenesis (NST). During lipolysis, white fat can be broken down into free fatty acids (FFAs) and glycerol. The brown fat can then use the FFAs to generate heat by oxidation. This process plays a crucial role in the regulation of body temperature during cold exposure.

In the current study, Nayak et al. found that lipolysis was brought about by the exposure of light receptors within white fat (encephalopsin, OPN3) to light. OPN3 was particularly sensitive to blue light. The mice lacking OPN3 or light exposure had diminished heat-generating responses when placed in cold environments. The authors conclude: “If the light-OPN3 adipocyte pathways exist in humans, there are potentially broad implications for human health. Our modern lifestyle subjects us to unnatural lighting spectra, exposure to light at night, shift work, and jet lag, all of which result in metabolic disruption. Based on the current findings, it is possible that insufficient stimulation of light-OPN3 adipocyte pathway is part of an explanation for the prevalence of metabolic deregulation in industrialized nations where unnatural lighting has become the norm.”

“Keep your eye fixed on the way to the top,

but don’t forget to look right in front of you.

The last step depends on the first.

Don’t think you’re there just because you see the summit.

Watch your footing,

be sure of the next step,

but don’t let that distract you from the highest goal.

The first step depends on the last.”

René Daumal

Soft Drinks May Cause Menopausal Hip Fractures

A study published this month in the journal Menopause looked into the relationships between carbonated soft drink consumption, osteoporosis (hip and lumbar spine) and incidental hip fractures. For almost 12 years Kremer et al. followed over 72,000 postmenopausal women from the Women’s Health Initiative Observational Study.

The results showed no associations between soft drink consumption and hip or lumbar spine bone mineral density – this finding was in contradiction with previous studies that had found an association. Consuming at least 14 carbonated soft drinks per week was associated with incident hip fractures. The relationship was statistically significant for caffeine-free soft drinks but not for caffeinated soft drinks. Interestingly, there was no significant risk if the intake was less than 14 servings per week, suggesting a ‘threshold effect’ rather than a ‘linear dose-response’ relationship. Drinking more than 14 carbonated soft drinks (non-caffeinated) per week led to a 32% increase in risk of hip fracture compared to women that didn’t drink any soft drinks.

The authors postulate that added sugars may have “a negative impact on mineral homeostasis and calcium balance“. Also, the carbonation of soft drinks “results in the formation of carbonic acid that might alter gastric acidity and, consequently, nutrient absorption“.