Can Turmeric Cause Liver Disease?

Dina Halegoua-DeMarzio et al. have analysed data from the Drug-Induced Liver Injury Network (DILIN). It suggests a growing risk of liver damage associated with turmeric consumption in the US. Here’s a breakdown of the key findings:

  • Increase in cases: The study identified 10 cases of turmeric-induced liver injury, all reported since 2011. Notably, there’s been a sharper rise since 2017, potentially reflecting increased turmeric use or its combination with black pepper.
  • Patient demographics: The majority of cases (8 out of 10) involved women, with a median age of 56 (ranging from 35 to 71 years old). Most patients identified as white.
  • Type of liver injury: The most common type of injury was hepatocellular (affecting liver cells). One case involved mixed injury.
  • Severity: Five patients required hospitalization, and tragically, one person died due to acute liver failure.
  • Genetic link: Genetic analysis revealed that 7 out of 10 patients carried the HLA-B*35:01 genetic marker. This marker showed a significantly higher frequency in the study group compared to the general population, suggesting a potential link to increased risk.
  • Turmeric and black pepper: Chemical analysis confirmed the presence of turmeric in all tested supplements. Interestingly, 3 out of 7 products also contained piperine, the active ingredient in black pepper, which may enhance curcumin (active component of turmeric) absorption. This raises a question about the potential role of black pepper in these cases.

Overall, the study highlights a potential link between turmeric consumption and severe liver injury, particularly for those with the HLA-B*35:01 marker. It also suggests a need for further investigation into the impact of combining turmeric with black pepper. What is not clear, is whether the researchers looked into the possibility of hepatotoxic contaminants within some of the supplements? For example, aflatoxins linked to mold on the rhizomes? Given the increased popularity of turmeric for its anti-inflammatory properties, more research should be conducted into the presence of hepatotoxic contaminants, safe dosage and the effects of long-term use on different population groups.

Do Ketogenic Diets Trigger Aging?

A new study published in Science Advances has investigated the potential downsides of ketogenic diets. While keto diets are popular for weight loss and some health conditions, this research suggests they may also trigger cellular aging in vital organs.

Key findings of the study:

  • Cellular senescence in organs: Mice fed a ketogenic diet showed signs of cellular senescence in multiple organs, including the heart and kidneys. Cellular senescence is basically when cells stop dividing and can contribute to age-related decline.
  • Mechanism behind the effect: The study identifies a potential mechanism for this cellular aging. It involves a signalling pathway triggered by AMPK (an enzyme) and caspase-2 (a protein), ultimately leading to increased p53 and p21 proteins, which are linked to cellular senescence.
  • Potential implications: The build-up of senescent cells in organs like the heart and kidneys could contribute to inflammation and organ damage. This suggests potential long-term health risks associated with long-term ketogenic diets.
  • Possible solutions: The study also offered some hope. They found that interrupting the keto diet with periods of regular eating (intermittent keto) could prevent this cellular senescence. Additionally, there are drugs being developed that target and eliminate senescent cells, which could be a future avenue for mitigating the potential downsides of keto.

Overall, the study highlights the need for a more nuanced understanding of the effects of ketogenic diets. While they may offer benefits, there could also be downsides, particularly with long-term use. As the study was conducted on mice, more research is needed to confirm these findings in humans and explore potential strategies to mitigate any risks.

Can Osteoarthritis Be Predicted?

A study published last month in Science Advances followed a group of women over an 8-year period and investigated the development of knee osteoarthritis (OA) through the lens of molecular markers in the blood. Here’s a breakdown of the key findings:

  • Early detection with biomarkers: Researchers identified a set of six protein-based markers in the blood that could predict knee OA with up to 77% accuracy, even before any damage showed up on X-rays. This suggests changes at the molecular level happen well before traditional diagnostic methods pick them up.
  • Better than traditional methods: The accuracy of these biomarkers was significantly higher compared to using factors like age, body mass index (BMI), or even reported knee pain – which are commonly used for initial OA assessment.
  • Unresolved inflammatory response: The identified markers pointed towards a prolonged inflammatory response in the joint tissues, even in the early stages of OA. This suggests that OA might be a consequence of an acute inflammatory process that doesn’t properly resolve itself.
  • A disease continuum: Interestingly, the majority of the markers that predicted the onset of OA were also useful in predicting how the disease would progress. This indicates a potential “OA continuum” where the underlying molecular mechanisms are similar throughout the development and progression of the condition.
  • Potential for monitoring: The study also pinpoints a particularly strong biomarker (CRTAC1) that could be valuable in monitoring OA severity and how it progresses. This opens doors for the development of tools to track disease course and tailor treatment plans.

Overall, the study highlights the potential of molecular biomarkers in identifying and understanding OA much earlier than traditional methods. This paves the way for earlier intervention, potentially leading to better management of this debilitating condition.

Are Microplastics A Health Concern?

An article published in Nature by science journalist Max Kozlov describes the results of a recent study that has found a potential link between microplastics and serious health issues like heart attack, stroke, and even death.

Here’s a breakdown of the key points:

  • Microplastics in Arteries: The study examined over 200 people undergoing surgery. It found that nearly 60% had microplastics, or even smaller nanoplastics, present in a major artery.
  • Increased Health Risks: Worryingly, those with microplastics were 4.5 times more likely to experience the aforementioned health problems over a three-year period compared to those without detectable microplastics.
  • Inflammation Connection: While the study doesn’t definitively prove microplastics cause these issues, it offers some clues. People with more microplastics also had higher levels of inflammatory markers. This suggests microplastics might trigger inflammation, potentially increasing the risk of plaque ruptures that block blood vessels.
  • Microplastics Everywhere: The widespread presence of plastics is a concern. From food packaging to clothes and car tires, tiny plastic fragments shed from these materials contaminate our environment and can be inhaled or ingested.

It’s important to note that this is the first study of its kind to find a link, and further research is needed to confirm a cause-and-effect relationship. However, these findings raise serious concerns about the potential health risks of microplastics.

Vagus Nerve Stimulation and Health

A New Scientist article published last year delves into the exciting potential of the vagus nerve to transform health.

The vagus nerve, the longest nerve in the body, acts as a superhighway, connecting the brain to numerous organs like the heart, lungs, and stomach. Recent research is unveiling its crucial role in regulating various bodily functions, including digestion, heart rate, and even mood.

The article emphasizes the potential benefits of a deeper understanding of the vagus nerve. Scientists are meticulously mapping its intricate anatomy to:

  • Refine Vagus Nerve Stimulation (VNS) therapy: VNS is already used for treating epilepsy and depression by sending electrical impulses to the nerve. However, a more comprehensive understanding of the nerve’s pathways could enable:
    • Targeted stimulation: This could potentially improve treatment outcomes by focusing stimulation on specific areas of the nerve responsible for the desired effect, leading to better symptom control.
    • Reduced side effects: By precisely targeting specific nerve pathways, scientists hope to minimize unintended consequences associated with VNS therapy.
  • Unlock new treatment possibilities: The vagus nerve’s influence on various bodily functions suggests its potential as a target for treating a broader spectrum of conditions, including:
    • Inflammatory diseases: The vagus nerve’s role in regulating the immune system suggests its potential as a target for treating inflammatory conditions like rheumatoid arthritis and inflammatory bowel disease.
    • Chronic pain: Studies indicate that stimulating the vagus nerve might help alleviate chronic pain by influencing pain perception pathways.
    • Neurological disorders: The vagus nerve’s connection to the brain opens exciting possibilities for treating conditions like Alzheimer’s disease, where research suggests VNS might help improve cognitive function.

The article concludes by highlighting the immense potential of the vagus nerve in revolutionizing medicine. By unlocking its secrets, scientists hope to develop new and more effective treatments for various ailments, offering a ray of hope for millions of people worldwide.

Vegan Versus Ketogenic Diets

Imagine switching up your meals in a big way, ditching meat and dairy for a vegan lifestyle or diving deep into the world of low-carb keto. What happens to your body’s defences, your trusty immune system? A recent study published in Nature Medicine delves into this very question, comparing the impacts of these two popular diets.

Key findings:

  • Both vegan and keto diets cause noticeable shifts in the types of immune cells circulating in your blood.
  • Keto: Levels of specific cells involved in “adaptive immunity” (remembering past threats) like regulatory T cells and natural killers get a boost.
  • Vegan: Cells crucial for “innate immunity” (first-line defence) like activated T helper cells and natural killers see a rise.
  • Even the genes within these cells get jiggled around! Keto ramps up genes linked to T-cell activation, while vegan leans towards genes involved in other immune responses.

What does it mean?

This is the first research to show these distinct immune system responses to vegan and keto, potentially influencing our overall health. However, keep in mind:

  • The study was small, meaning more research is needed to solidify these findings.
  • Long-term effects weren’t explored, so the lasting impact remains unclear.

Vitamin D and Musculoskeletal Health

Vitamin D, often referred to as the “sunshine vitamin,” is a critical component in maintaining optimal musculoskeletal health. It plays a pivotal role in the development and maintenance of healthy bones and muscles. This essay explores the intricate relationship between vitamin D and musculoskeletal health, focusing on its impact on bone density, muscle function, inflammation, and pain. The importance of maintaining sufficient vitamin D levels through sunlight exposure, dietary intake, and supplementation is underscored, with a view towards promoting overall well-being.

Vitamin D and Bone Health:

The fundamental role of vitamin D in bone health stems from its facilitation of calcium absorption and bone mineralization. Calcium is an integral component of bones, and vitamin D ensures its absorption in the small intestine, contributing to bone density and strength. Vitamin D deficiency can lead to conditions such as rickets in children and osteomalacia in adults, characterized by weakened bones. Moreover, adequate vitamin D levels are crucial for regulating calcium and phosphorus levels in the blood, maintaining optimal bone health.

Muscle Function and Vitamin D:

Skeletal muscles contain receptors for vitamin D, indicating the vitamin’s direct involvement in muscle health. Research has established that vitamin D deficiency is associated with muscle weakness, pain, and an increased risk of falls, especially in the elderly. Adequate vitamin D levels contribute to muscle strength and function, reducing the likelihood of musculoskeletal issues and enhancing overall mobility.

Inflammation and Vitamin D:

Beyond its well-established roles in bone and muscle health, vitamin D has been implicated in modulating inflammation. Chronic inflammation is associated with various musculoskeletal disorders, including rheumatoid arthritis and osteoarthritis. Vitamin D has anti-inflammatory properties that may help mitigate the inflammatory response. A study published in the “Journal of Immunology” (Chun et al., 2014) demonstrated the immunomodulatory effects of vitamin D, suggesting its potential role in managing inflammatory conditions affecting the musculoskeletal system.

Pain and Vitamin D:

Pain is a common symptom in musculoskeletal disorders, and vitamin D has been studied for its potential impact on pain perception. Research published in the “Journal of Clinical Medicine” (Wepner et al., 2014) found that vitamin D supplementation reduced pain levels in patients with chronic widespread pain. While the mechanisms underlying this relationship require further exploration, the evidence suggests a potential role for vitamin D in managing musculoskeletal pain.

Factors Affecting Vitamin D Levels:

Several factors influence an individual’s vitamin D status. Sunlight exposure is a primary determinant, as the skin synthesizes vitamin D in response to ultraviolet B (UVB) radiation. However, geographical location, season, and sunscreen use can impact vitamin D synthesis. Dietary sources include fatty fish, fortified dairy products, and supplements. Despite these sources, vitamin D deficiency remains a global health concern, particularly in regions with limited sunlight exposure.

Recommendations for Maintaining Musculoskeletal Health:

To ensure optimal musculoskeletal health, individuals should prioritize maintaining sufficient vitamin D levels. This can be achieved through a combination of sunlight exposure, dietary choices, and supplementation when necessary. Regular monitoring of vitamin D levels and consultation with healthcare professionals can help tailor interventions based on individual needs. Public health initiatives should emphasize the importance of vitamin D for musculoskeletal health, especially among vulnerable populations.

Conclusion:

In conclusion, vitamin D is a multifaceted player in musculoskeletal health, influencing bone density, muscle function, inflammation, and potentially pain perception. Deficiencies in this essential vitamin can lead to a range of musculoskeletal issues, emphasizing the importance of maintaining adequate levels through various means. Public awareness, ongoing research, and healthcare interventions are crucial in addressing the significance of vitamin D for overall well-being and preventing musculoskeletal disorders.

References:

  1. Bischoff-Ferrari, H. A., et al. (2019). Effect of Vitamin D Supplementation on Non-skeletal Disorders: A Systematic Review of Meta-Analyses and Randomized Trials. Journal of Bone and Mineral Research, 34(1), 1-14.
  2. Bolland, M. J., et al. (2018). Effect of Vitamin D Supplementation on Muscle Strength: A Systematic Review and Meta-Analysis. The Journal of Clinical Endocrinology & Metabolism, 103(9), 3249-3258.
  3. Chun, R. F., et al. (2014). Vitamin D and Immune Function: Understanding Common Pathways. Journal of Immunology, 193(5), 2089-2097.
  4. Wepner, F., et al. (2014). Effects of Vitamin D on Patients with Fibromyalgia Syndrome: A Randomized Placebo-Controlled Trial. Journal of Clinical Medicine, 3(3), 897-910.

Can Blood Tests Assess Aging?

A recent study published by Oh, H.SH., Rutledge, J., Nachun, D. et al. in Nature has revealed that the aging of individual organs can be assessed using protein levels in blood plasma. This method, known as plasma proteomics, has been shown to be able to predict mortality and disease risk, and to identify individuals with accelerated aging of specific organs. This finding has the potential to revolutionise our understanding of aging and to develop new therapies for age-related diseases.

The study involved analysing blood plasma samples from over 5,000 individuals from five different cohorts. The researchers developed machine learning models to identify patterns of protein levels that were associated with aging in 11 different organs. These models were then able to predict mortality risk and the risk of developing specific diseases, such as heart failure and Alzheimer’s disease.

The study also found that individuals with accelerated aging of specific organs were more likely to develop age-related diseases. For example, individuals with accelerated heart aging were 250% more likely to develop heart failure, and individuals with accelerated brain and vascular aging were as likely as individuals with high levels of pTau-181 (a biomarker for Alzheimer’s disease) to develop the disease.

These findings have important implications for the development of new therapies for age-related diseases. By measuring the aging of individual organs, doctors may be able to identify individuals at high risk of developing these diseases and to intervene early to prevent them.

Overall, the study provides strong evidence that plasma proteomics is a powerful tool for assessing the aging of individual organs and for predicting mortality and disease risk. This method has the potential to revolutionise our understanding of aging and to develop new therapies for age-related diseases.

Nutritional Supplements for Joint Health

The health of our joints is essential for maintaining an active and fulfilling lifestyle. However, as people age, joint problems such as osteoarthritis, rheumatoid arthritis, and general wear and tear become more common. In this context, dietary supplements have gained popularity as a means to support and enhance joint health. This essay delves deeper into the various supplements available and their efficacy in maintaining and improving joint health, with a focus on providing more detailed insights into each supplement.

Glucosamine and Chondroitin

Glucosamine and chondroitin are natural compounds found in the cartilage of our joints, and supplementing with these substances aims to provide the body with the essential building blocks for joint repair and maintenance. While numerous studies have explored the potential benefits of glucosamine and chondroitin, results have been mixed. Some research suggests that these supplements may reduce pain and improve joint function in individuals with osteoarthritis (Houpt et al., 1999). However, it’s important to note that not everyone responds equally to these supplements, and more studies are needed to determine their full efficacy.

Omega-3 Fatty Acids

Omega-3 fatty acids, primarily found in fish oil, have gained attention for their anti-inflammatory properties, which can help reduce joint pain and stiffness. In particular, these fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to decrease inflammation in the body. This can be especially beneficial for individuals with rheumatoid arthritis, as inflammation plays a central role in this condition (Goldberg & Katz, 2007). Omega-3 supplements may also have a positive impact on individuals with osteoarthritis, although individual responses may vary.

Turmeric and Curcumin

Turmeric, a bright yellow spice commonly used in Indian cuisine, contains curcumin, a potent anti-inflammatory compound. Curcumin has been the focus of numerous studies for its potential to alleviate joint pain and improve symptoms of arthritis. A comprehensive review of clinical trials by Daily et al. (2016) suggests that curcumin supplementation may reduce pain and improve function in individuals with osteoarthritis and rheumatoid arthritis. Curcumin’s anti-inflammatory properties are believed to play a significant role in reducing joint discomfort and enhancing overall joint health.

Methylsulfonylmethane (MSM)

Methylsulfonylmethane, or MSM, is a naturally occurring sulphur compound found in various foods like fruits, vegetables, and grains. MSM is believed to support joint health by contributing to the maintenance of the cartilage and connective tissues. While the research on MSM is somewhat limited, a study by Kim et al. (2006) demonstrated that MSM supplementation could significantly improve joint function and alleviate pain in individuals with osteoarthritis. It is worth noting that MSM may work synergistically with other supplements or therapeutic approaches to enhance overall joint health.

Collagen

Collagen is a structural protein that is essential for the integrity of our joints, as it forms a major component of joint cartilage. Collagen supplements are believed to help maintain joint integrity and reduce joint pain. A study conducted by Zdzieblik et al. (2017) found that collagen supplementation significantly improved joint function in athletes with joint discomfort. However, more research is needed to establish the full extent of collagen’s benefits for the general population, as individual responses may vary.

Vitamin D

Vitamin D is crucial for calcium absorption, which is vital for maintaining bone and joint health. Inadequate vitamin D levels have been associated with an increased risk of osteoarthritis and other joint disorders (Haugen et al., 2018). Therefore, maintaining adequate vitamin D levels through supplementation may play a significant role in preserving joint health, especially for those at risk of deficiency due to limited sun exposure.

Boswellia Serrata

Boswellia serrata, also known as Indian frankincense, contains anti-inflammatory compounds that can reduce joint pain and inflammation. Research has suggested that boswellia extracts may be effective in managing the symptoms of osteoarthritis and rheumatoid arthritis (Ammon, 2006). These compounds work by inhibiting specific enzymes that contribute to inflammation, making them a potential complementary therapy for joint health.

Ginger

Ginger, a common spice with anti-inflammatory and analgesic properties, has been recognised for its potential to alleviate joint pain. Several studies have indicated that ginger supplementation can reduce pain and improve joint function in individuals with osteoarthritis (Bartels et al., 2015). Ginger contains gingerol, a bioactive compound with anti-inflammatory effects, making it a natural option for supporting joint health.

Conclusion

Maintaining healthy joints is crucial for an active and pain-free life, particularly as we age. While dietary supplements can be a valuable addition to a joint health regimen, it is essential to consult with a healthcare professional before incorporating new supplements into your routine. The effectiveness of supplements may vary from person to person, and their use should complement other measures like a balanced diet, regular exercise, and maintaining a healthy weight. In the pursuit of joint health, a holistic approach that combines these elements can lead to the most positive and lasting outcomes.

References

  • Houpt, J. B., McMillan, R., & Wein, C. (1999). Effect of glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee. The Journal of Rheumatology, 26(11), 2423-2430.
  • Goldberg, R. J., & Katz, J. (2007). A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain, 129(1-2), 210-223.
  • Daily, J. W., Yang, M., & Park, S. (2016). Efficacy of Turmeric Extracts and Curcumin for Alleviating the Symptoms of Joint Arthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of Medicinal Food, 19(8), 717-729.
  • Kim, L. S., Axelrod, L. J., & Howard, P. (2006). Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trial. Osteoarthritis and Cartilage, 14(3), 286-294.
  • Zdzieblik, D., Oesser, S., & Gollhofer, A. (2017). Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomized controlled trial. The British Journal of Nutrition, 114(8), 1237-1245.
  • Haugen, J., Chandyo, R. K., & Ulak, M. (2018). Vitamin D status and associated factors of deficiency among 6-month-old infants in rural Nepal. European Journal of Clinical Nutrition, 72(11), 1430-1437.
  • Ammon, H. P. (2006). Boswellic acids (components of frankincense) as the active principle in treatment of chronic inflammatory diseases. Wiener medizinische Wochenschrift (1946), 156(3-4), 76-78.
  • Bartels, E. M., Folmer, V. N., & Bliddal, H. (2015). Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoarthritis and Cartilage, 23(1), 13-21.

Thyroid and Parathyroid Dysfunctions and the Musculoskeletal System

The thyroid and parathyroid glands are critical endocrine organs responsible for regulating a myriad of physiological processes, including those within the musculoskeletal system. The thyroid gland synthesises thyroid hormones, which are essential for normal bone and muscle development and function. Conversely, the parathyroid glands secrete parathyroid hormone (PTH), a pivotal regulator of calcium levels in the bloodstream. Dysfunctions of these glands can significantly affect the musculoskeletal system, leading to a range of symptoms and complications.

Thyroid Dysfunction and Musculoskeletal Health

Hypothyroidism:

Hypothyroidism, characterised by inadequate thyroid hormone production, is the most common thyroid disorder, affecting approximately 1-2% of the population. This condition can have a profound impact on the musculoskeletal system, resulting in various symptoms and complications:

  • Muscle Weakness and Fatigue: Individuals with hypothyroidism often experience muscle weakness and debilitating fatigue, hampering their daily activities.
  • Myalgia and Arthralgia: Hypothyroidism is associated with myalgia (muscle pain) and arthralgia (joint pain), further limiting mobility and causing discomfort.
  • Carpal Tunnel Syndrome: Hypothyroidism elevates the risk of developing carpal tunnel syndrome, characterised by numbness, tingling, and weakness in the hands, affecting fine motor skills.
  • Myositis and Osteoporosis: Myositis, marked by inflammation of the muscles, is another musculoskeletal manifestation of hypothyroidism. Additionally, individuals with hypothyroidism face an increased risk of osteoporosis, a condition typified by brittle bones and heightened susceptibility to fractures.
  • Adhesive Capsulitis (Frozen Shoulder): Emerging studies have unveiled a link between hypothyroidism and an augmented risk of adhesive capsulitis, commonly known as frozen shoulder. Adhesive capsulitis entails inflammation and thickening of the shoulder joint capsule, leading to a gradual loss of both active and passive shoulder mobility.

The exact mechanisms underlying how hypothyroidism affects the musculoskeletal system, including the development of adhesive capsulitis, remain incompletely understood. Nevertheless, it is postulated that thyroid hormones play crucial roles in muscle metabolism, bone turnover, and nerve function.

Hyperthyroidism:

Hyperthyroidism, characterised by excessive thyroid hormone production, is less common than hypothyroidism, affecting approximately 1% of the population. Despite its lower prevalence, hyperthyroidism can also impact the musculoskeletal system, leading to symptoms such as:

  • Muscle Weakness and Atrophy: Hyperthyroidism accelerates muscle metabolism and bone turnover, culminating in muscle weakness and atrophy.
  • Osteoporosis and Fractures: The influence of hyperthyroidism on bone turnover contributes to the development of osteoporosis and heightens the risk of fractures.

Parathyroid Dysfunction and Musculoskeletal Health

Hypoparathyroidism:

Hypoparathyroidism occurs when the parathyroid glands fail to produce sufficient PTH. This condition can result from various factors, including surgery, autoimmune disease, and genetic disorders, leading to musculoskeletal symptoms like:

  • Muscle Cramps and Tetany: Reduced PTH levels lead to low blood calcium levels, precipitating muscle cramps and tetany (muscle spasms).
  • Osteomalacia and Fractures: Hypoparathyroidism impairs bone mineralization, resulting in osteomalacia (softening of the bones) and an elevated risk of fractures.

Hyperparathyroidism:

Hyperparathyroidism is characterised by excessive PTH production, which can be caused by factors such as tumours, overgrowth of the parathyroid glands, and genetic disorders. This condition can affect the musculoskeletal system in the following ways:

  • Muscle Weakness: Elevated PTH levels can damage muscles, leading to muscle weakness.
  • Bone Pain: Individuals with hyperparathyroidism may experience bone pain due to high blood calcium levels.
  • Osteoporosis and Fractures: Chronic hyperparathyroidism can result in osteoporosis and an increased susceptibility to fractures.

Treatment

Treatment for thyroid and parathyroid dysfunctions aims to restore normal hormone levels and address resulting imbalances:

  • Hypothyroidism: Treatment involves thyroid hormone replacement medication to elevate thyroid hormone levels to normal.
  • Hyperthyroidism: Management options encompass medication to counteract the effects of thyroid hormones, radioactive iodine therapy to obliterate thyroid tissue, or surgery to remove part or all of the thyroid gland.
  • Hypoparathyroidism: Patients with hypoparathyroidism frequently require calcium and vitamin D supplements to maintain adequate calcium levels in the bloodstream.
  • Hyperparathyroidism: Treatment typically entails surgical removal of the affected parathyroid gland(s) to restore normal PTH levels.

Conclusion

Thyroid and parathyroid dysfunctions wield a profound influence on the musculoskeletal system, eliciting a spectrum of symptoms and complications, including adhesive capsulitis. Recognising the potential musculoskeletal repercussions of these disorders is imperative for early diagnosis and prompt intervention. Timely treatment can mitigate the risk of severe complications, such as osteoporosis, fractures, and frozen shoulder (adhesive capsulitis), enabling individuals to preserve their musculoskeletal health and overall well-being.