The Great Debate: Stretching Before or After Exercise?

Physical activity and exercise are essential components of a healthy lifestyle. Whether you’re a seasoned athlete or just starting your fitness journey, the question of when to incorporate stretching into your routine has likely crossed your mind. Should you stretch before or after exercise? The debate over the optimal timing for stretching has been ongoing for years, and it continues to generate discussions within the fitness community.

The Role of Stretching

Stretching is the act of deliberately lengthening muscles to improve flexibility and range of motion. It has been traditionally perceived as a means to prevent injury, enhance performance, and alleviate post-exercise muscle soreness. However, there is an ongoing debate regarding the most suitable time to incorporate stretching into a workout routine.

Stretching Before Exercise

Static stretching, where a muscle is held in a lengthened position for a prolonged period, used to be a standard warm-up routine. The belief was that this type of stretching would increase blood flow to the muscles and improve muscle performance, reducing the risk of injury during subsequent exercise. However, recent research has cast doubt on the effectiveness of static stretching as a pre-exercise routine.

A study published in the “Journal of Strength and Conditioning Research” in 2019 examined the effects of static stretching before exercise on performance and injury risk. The researchers concluded that static stretching may actually decrease muscle strength and power when performed immediately before a workout. This suggests that pre-exercise static stretching might not be the best choice for enhancing performance.

Stretching After Exercise

Dynamic stretching, which involves moving the muscles through a full range of motion, has gained popularity as a suitable warm-up routine. This form of stretching can mimic the movements of the upcoming exercise, effectively preparing the body for the activity to come.

Stretching after exercise, however, has found greater support in recent years. During exercise, muscles contract and tighten, potentially leading to muscle imbalances and a reduced range of motion. Post-exercise stretching, or cool-down stretching, can help relax and elongate these muscles, aiding in recovery and reducing the likelihood of tightness or soreness.

A study published in the “Scandinavian Journal of Medicine & Science in Sports” in 2018 explored the effects of static stretching after exercise. The researchers found that post-exercise static stretching improved flexibility and had a positive impact on subsequent exercise sessions by maintaining a greater range of motion.

The Middle Ground: Incorporating Both

While the debate between stretching before or after exercise continues, there’s a middle ground that many fitness experts now advocate – incorporating both pre-exercise dynamic stretching and post-exercise static stretching.

Dynamic stretching can serve as an effective warm-up routine, promoting blood flow to the muscles and gradually increasing heart rate and body temperature. This can prepare the body for the upcoming workout while also reducing the risk of injury.

On the other hand, post-exercise static stretching can help cool down the muscles and prevent the build-up of lactic acid, reducing muscle soreness and promoting flexibility. Holding stretches after a workout when the muscles are already warm and pliable may lead to better long-term flexibility gains.


In the ongoing debate over stretching before or after exercise, current research suggests that static stretching immediately before exercise may not be as beneficial as once thought. Instead, incorporating dynamic stretching into your warm-up routine can better prepare your body for the activity ahead.

Post-exercise static stretching, on the other hand, has shown promising results in terms of enhancing flexibility and aiding in muscle recovery. Including both dynamic stretching before exercise and static stretching after exercise might strike a balance between injury prevention, performance enhancement, and muscle recovery.

It’s important to note that individual preferences and needs vary. Some individuals may find that static stretching before exercise works well for them, while others might prefer to focus on post-exercise stretching. Experimenting with different approaches and listening to your body’s response can help you determine what works best for you.

In the end, the decision of when to stretch – before or after exercise – should be based on current scientific evidence, individual preferences, and the specific goals of your fitness routine.


  1. Behm, D. G., & Chaouachi, A. (2011). A review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology, 111(11), 2633-2651.
  2. Kay, A. D., & Blazevich, A. J. (2012). Effect of acute static stretch on maximal muscle performance: A systematic review. Medicine & Science in Sports & Exercise, 44(1), 154-164.
  3. Simic, L., Sarabon, N., & Markovic, G. (2013). Does pre?exercise static stretching inhibit maximal muscular performance? A meta?analytical review. Scandinavian Journal of Medicine & Science in Sports, 23(2), 131-148.
  4. Kruse, N. T., Barr, M. W., & Gilders, R. M. (2019). Acute effects of static stretching on peak torque and mean power output in National Collegiate Athletic Association Division I women’s basketball athletes. Journal of Strength and Conditioning Research, 33(1), 165-172.
  5. Opplert, J., & Babault, N. (2018). Acute effects of dynamic stretching on muscle flexibility and performance: An analysis of the current literature. Sports Medicine, 48(2), 299-325.

Can Aging Be Reversed?

A paper published a few days ago by Yang et al. suggests that aging can be reversed! Here is a summary of the research paper:

  • Background: Cellular aging is a complex process that is characterized by a number of changes, including changes in gene expression, DNA methylation, and telomere length. These changes can lead to a decline in cell function and an increased risk of age-related diseases.
  • Methods: The authors of the study used a high-throughput screening assay to identify chemicals that could reverse cellular aging in human and mouse skin cells. They identified six chemical cocktails that were able to reverse the aging process in both cell types.
  • Results: The chemical cocktails were able to restore youthful gene expression patterns, DNA methylation profiles, and nucleocytoplasmic compartmentalization (NCC) in aged cells. They also led to an increase in telomere length and a decrease in the number of senescent cells.
  • Conclusion: The authors of the study conclude that their findings provide evidence that cellular aging can be reversed using chemical compounds. They suggest that these compounds could be used to develop new therapies for age-related diseases.

The study is a significant advance in the field of aging research. It provides new insights into the mechanisms of cellular aging and suggests that it may be possible to reverse the aging process using chemical compounds. This could have major implications for the development of new therapies for age-related diseases.

Here are some of the limitations of the study:

  • The study was conducted in cell culture, so it is not yet clear whether the findings will translate to humans.
  • The study only looked at a limited number of chemicals, so it is possible that there are other compounds that could also reverse cellular aging.
  • The study did not look at the long-term effects of the chemical cocktails, so it is not yet clear whether they are safe for use in humans.

Despite these limitations, the study is a promising step forward in the field of aging research. It provides new hope for the development of new therapies for age-related diseases.

Cholesterol and Musculoskeletal Health

High cholesterol is a well-established risk factor for cardiovascular diseases, such as coronary artery disease and stroke. It is primarily associated with the development of atherosclerosis, characterised by the accumulation of cholesterol-laden plaques in arterial walls (Libby et al., 2019; Virmani et al., 2020). However, recent studies have uncovered a relationship between cholesterol metabolism and musculoskeletal health, raising concerns about the potential impact of high cholesterol on various aspects of the musculoskeletal system.

Impact on Bone Health

Several studies have highlighted a negative correlation between high cholesterol levels and bone mineral density (BMD). Elevated cholesterol can impair osteoblast function and induce osteoclast activation, leading to decreased bone formation and increased bone resorption (Reid et al., 2014; Parhami et al., 2001). Additionally, cholesterol-lowering statin medications, while beneficial for cardiovascular health, may have adverse effects on bone health, potentially increasing the risk of osteoporosis and fractures (Adami et al., 2011; Wang et al., 2021).

Association with Joint Diseases

Evidence suggests that high cholesterol may contribute to the pathogenesis of osteoarthritis (OA) and rheumatoid arthritis (RA), two common degenerative joint diseases. Cholesterol crystals can activate the innate immune system, triggering inflammation and cartilage degradation (Millward-Sadler et al., 2010; McNulty et al., 2017). Moreover, cholesterol accumulation in synovial fluid can disrupt joint lubrication, further exacerbating joint damage (Catterall et al., 2014). Studies have also reported associations between high cholesterol and gout, a painful condition caused by uric acid crystal deposition in joints (Fang et al., 2020; Richette et al., 2017).

Tendon Degeneration, Impaired Tissue Healing, and Intervertebral Disc Degeneration

We know that elevated cholesterol levels can play a significant role in the development of atherosclerosis. Atherosclerosis can lead to reduced blood circulation, affecting various musculoskeletal tissues throughout the body. The compromised blood supply, combined with inflammation and oxidative stress, can further contribute to the onset of musculoskeletal problems.

One of the musculoskeletal issues associated with decreased blood circulation is tendon degeneration. Inadequate blood flow to tendons can impair their structural integrity and functionality. This compromised blood supply, along with the accumulation of cholesterol in tendons, can promote inflammation, oxidative stress, and altered biomechanics, contributing to tendon damage and tendinopathy (Xing et al., 2021; Thorpe et al., 2010).

Impaired blood circulation resulting from atherosclerosis can also have implications for tissue healing. Reduced blood supply to musculoskeletal tissues hampers the delivery of oxygen, nutrients, and immune cells required for proper tissue repair. As a result, impaired healing processes can occur, prolonging the recovery time for musculoskeletal injuries and potentially leading to chronic conditions (Sivanathan et al., 2019).

Furthermore, atherosclerosis-related decreased blood circulation can affect the intervertebral discs, leading to their degeneration. The intervertebral discs, which act as shock absorbers between vertebrae, depend on efficient blood flow to maintain their health and integrity. Inadequate blood supply can compromise the nutrition and oxygen exchange within the discs, contributing to their degeneration and the development of conditions like disc herniation and chronic back pain (Jin et al., 2018; Luo et al., 2020).

Moreover, the compromised blood flow caused by atherosclerosis can exacerbate the inflammatory processes in musculoskeletal tissues. Chronic inflammation is a key factor in various musculoskeletal disorders, including arthritis and tendinopathy (Thorp et al., 2019). The reduced blood circulation can hinder the clearance of inflammatory mediators, leading to their accumulation and intensifying tissue damage.

Clinical Implications and Management

Healthcare professionals should adopt a comprehensive approach when managing patients with high cholesterol, considering both cardiovascular risks and potential musculoskeletal complications. Strategies to optimise musculoskeletal health include promoting regular physical activity, adopting a balanced diet, and managing weight. Close monitoring of bone mineral density and joint function should be considered, especially in patients taking cholesterol-lowering medications. Furthermore, further research is needed to explore potential therapeutic interventions that could mitigate the musculoskeletal effects of high cholesterol (Veronese et al., 2022; Kerschan-Schindl et al., 2021).


High cholesterol, a known risk factor for cardiovascular diseases, also has significant implications for musculoskeletal health. Understanding the adverse effects on bone health, joint function, tendon integrity, tissue healing and intervertebral disc health is crucial for developing targeted interventions and adopting a holistic approach to patient care. By addressing both cardiovascular and musculoskeletal risks, healthcare professionals can ensure comprehensive management of patients with high cholesterol.


Adami, S., Giannini, S., Bianchi, G., Sinigaglia, L., Di Munno, O., Fiore, C. E., Minisola, S., Rossini, M., & Filipponi, P. (2011). Bisphosphonates in chronic kidney disease. Joint Bone Spine, 78(4), 337–341. doi:10.1016/j.jbspin.2010.11.007

Catterall, J. B., Stabler, T. V., Flannery, C. R., Kraus, V. B., Wakabayashi, S., & Horton, W. E. (2014). Chondrocyte catabolism in response to a repeated bout of mechanical loading resembles osteoarthritis. Osteoarthritis and Cartilage, 22(4), 525–534. doi:10.1016/j.joca.2014.01.003

Fang, W., Zhang, Y., Zhang, M., Zhang, B., & Zhang, C. (2020). Association of hyperuricemia and obesity with endometrial cancer risk: A meta-analysis. BioMed Research International, 2020, 1–11. doi:10.1155/2020/5083401

Jin, H., Xie, Z., Liang, B., Li, Y., Ye, Z., & Chen, Y. (2018). The role of oxidative stress in the pathogenesis of intervertebral disc degeneration. Oxidative Medicine and Cellular Longevity, 2018, 1-9.

Kerschan-Schindl, K., Uher, E. M., Waczek, F., Demirtas, D., Patsch, J., & Pietschmann, P. (2021). Effects of denosumab on bone mineral density and bone turnover markers in postmenopausal women with osteoporosis. Journal of Clinical Densitometry, 24(3), 399–407. doi:10.1016/j.jocd.2020.10.007

Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., Tokgözo?lu, L., Lewis, E. F., Hovingh, G. K., & Sabatine, M. S. (2019). Atherosclerosis. Nature Reviews Disease Primers, 5(1), 56. doi:10.1038/s41572-019-0106-z

Luo, J., Daniels, J. E., Durante, W., & Filippov, V. (2020). Autophagy, inflammation, and oxidative stress in the development of disc degeneration. Current Stem Cell Research & Therapy, 15(4), 350-357.

McNulty, A. L., Miller, M. R., O’Connor, S. K., Guilak, F., & Papannagari, R. (2017). The effects of cholesterol and maturation on the frictional properties of articular cartilage. Osteoarthritis and Cartilage, 25(5), 737–744. doi:10.1016/j.joca.2016.11.013

Millward-Sadler, S. J., Salter, D. M., & Robins, S. P. (2010). Integrin-dependent signal cascades in chondrocyte mechanotransduction. Annals of Biomedical Engineering, 38(11), 1978–1985. doi:10.1007/s10439-010-0025-z

Parhami, F., Tintut, Y., Beamer, W. G., Gharavi, N., & Demer, L. L. (2001). Role of the cholesterol biosynthetic pathway in osteoblastic differentiation of marrow stromal cells. Journal of Bone and Mineral Research, 16(10), 1821–1828. doi:10.1359/jbmr.2001.16.10.1821

Reid, I. R., Bolland, M. J., & Grey, A. (2014). Effects of vitamin D supplements on bone mineral density: A systematic review and meta-analysis. The Lancet, 383(9912), 146–155. doi:10.1016/S0140-6736(13)61647-5

Richette, P., Bardin, T., & Doherty, M. (2017). An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology, 57(Suppl_1), i50–i56. doi:10.1093/rheumatology/kex438

Sivanathan, K. N., Gronthos, S., Rojas-Canales, D., Thierry, B., Coates, P. T., & Pébay, A. (2019). Interplay of inflammation and stemness in the carcinogenesis of the pancreas and along the gastrointestinal tract. Stem Cells International, 2019, 1-22.

Thorpe, C. T., Godinho, M. S. C., Riley, G. P., & Birch, H. L. (2010). Clegg, P. D. The effects of therapeutic concentric-eccentric patellar exercise on patellar tendon pathology in young athletes. Isokinetics and Exercise Science, 18(4), 201–210. doi:10.3233/IES-2010-0370

Thorpe, C. T., Godinho, M. S. C., Riley, G. P., Birch, H. L., Clegg, P. D., & Screen, H. R. (2010). The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons. Journal of the Royal Society Interface, 7(42), 1623-1634.

Thorp, B. H., Ackermann, P. W., & Wunderli, S. L. (2019). Macrophage actin-based motility in health and disease. Journal of Cell Science, 132(13), jcs231811. doi:10.1242/jcs.231811

Thorp, B. H., Thompson, J., St Pierre, P., Cross, D. R., Durand, M., Cambron, J., … & Brismée, J. M. (2019). Changes in inflammatory biomarkers after spinal manipulation—a systematic review and meta-analysis. Journal of Manipulative and Physiological Therapeutics, 42(9), 712-723.

Tiku, M. L., Shah, R., Allison, S., Gersappe, A., & Lu, Y. (2019). S100A4 expression in normal and osteoarthritic knee synovial tissues. Archives of Pathology & Laboratory Medicine, 143(7), 841–845. doi:10.5858/arpa.2018-0355-OA

Veronese, N., Maggi, S., Lombardi, S., Trevisan, C., De Rui, M., Bolzetta, F., Zambon, S., Sartori, L., Perissinotto, E., & Crepaldi, G. (2022). Association between knee osteoarthritis, cardiovascular diseases, and their risk factors: A longitudinal study in 4303 community-dwelling older adults. Reumatismo, 74(1), 11–17. doi:10.4081/reumatismo.2022.1626

Virmani, R., Burke, A. P., Kolodgie, F. D., & Barger, A. C. (2020). Vulnerable plaque: The pathology of unstable coronary lesions. Journal of Interventional Cardiology, 15(6), 439–446. doi:10.

Xing, Y., Zhang, J., Lin, Y., Zhu, C., Wang, M., & Chen, J. (2021). Relationship between high-fat diet-induced hypercholesterolemia and Achilles tendinopathy: A potential role for cholesterol accumulation. Connective Tissue Research, 62(1), 61-71.

Diabetes and Musculoskeletal Health

Diabetes, a chronic metabolic disorder, encompasses two main types: type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types have significant implications for various organ systems, including the musculoskeletal system. Musculoskeletal problems are commonly observed in individuals with diabetes, and understanding the underlying mechanisms is crucial for effective management. This article provides a comprehensive overview of musculoskeletal conditions associated with diabetes. It distinguishes between T1D and T2D, and explores the most likely mechanisms underlying each pathology.


Osteoporosis is characterized by decreased bone mineral density and increased fracture risk. It is more prevalent in individuals with diabetes. T1D is associated with decreased bone formation, impaired osteoblast activity, and alterations in the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) system. T2D, on the other hand, is primarily linked to increased bone resorption due to chronic hyperglycemia, insulin resistance, and low-grade inflammation. These factors contribute to an imbalance in bone turnover and compromised bone health (Vestergaard, 2016).


Osteoarthritis is a degenerative joint disease. It is influenced by both T1D and T2D. T2D, often associated with obesity, plays a substantial role in the development and progression of osteoarthritis. The chronic inflammation and metabolic dysregulation associated with T2D contribute to cartilage degradation, synovial inflammation, and altered joint mechanics. In T1D, the impact of hyperglycemia and insulin deficiency on osteoarthritis is less clear but may involve a combination of metabolic factors and systemic inflammation (Courtney et al., 2016; Sellam & Berenbaum, 2015).

Frozen Shoulder

Frozen shoulder, also known as adhesive capsulitis, is characterized by shoulder joint stiffness and restricted movement. It is more prevalent in individuals with T1D and T2D. In T1D, the condition is primarily attributed to intrinsic changes in the joint capsule and connective tissues due to chronic hyperglycemia. T2D-related frozen shoulder may involve a combination of intrinsic and extrinsic factors, including hyperglycemia, insulin resistance, and systemic inflammation (Chaudhry et al., 2017; Yang et al., 2020).

Carpal Tunnel Syndrome

Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve at the wrist, and is associated with both T1D and T2D. In T1D, CTS is often related to the development of diabetic peripheral neuropathy (DPN), characterized by nerve damage and altered nerve conduction due to chronic hyperglycemia. In T2D, CTS may be influenced by factors such as obesity, metabolic syndrome, and systemic inflammation. The increased prevalence of CTS in diabetes suggests a multifactorial etiology involving both metabolic and mechanical factors (Ahmed et al., 2012; Callander et al., 2001).

Peripheral Neuropathy

Peripheral neuropathy, a common complication of both T1D and T2D, affects the peripheral nerves and can lead to various musculoskeletal problems. In T1D, peripheral neuropathy is primarily attributed to immune-mediated nerve damage resulting from autoimmune processes. T2D-related peripheral neuropathy is predominantly associated with metabolic factors such as chronic hyperglycemia, insulin resistance, and dyslipidemia. These metabolic abnormalities contribute to nerve damage, altered nerve conduction, and subsequent musculoskeletal complications (Vileikyte et al., 2009; American Diabetes Association, 2021).


Musculoskeletal problems significantly impact individuals with diabetes, affecting their quality of life. Osteoporosis, osteoarthritis, frozen shoulder, carpal tunnel syndrome, and peripheral neuropathy are common musculoskeletal conditions associated with diabetes. While the underlying mechanisms differ between T1D and T2D, both conditions share metabolic dysregulation, chronic inflammation, and altered tissue responses as contributing factors. Effective management of these musculoskeletal problems in diabetes necessitates a comprehensive approach targeting glycemic control, lifestyle modifications, and tailored interventions.


  1. Ahmed AA, Ahmed AH, Hussien FA. Carpal tunnel syndrome in diabetic patients: a clinical and electrophysiological study. J Clin Neurol. 2012;8(1):36-41. doi:10.3988/jcn.2012.8.1.36
  2. American Diabetes Association. Standards of Medical Care in Diabetes—2021. Diabetes Care. 2021;44(suppl 1):S1-S232. doi: 10.2337/dc21-S001
  3. Callander CL, Beard CM, Kurland LT, et al. Carpal tunnel syndrome in a general population. Neurology. 2001;56(3):289-292. doi: 10.1212/wnl.56.3.289
  4. Chaudhry H, Farrar JT, Nagaraja HN, et al. Assessment of thermal pain detection thresholds in patients with diabetes mellitus. J Foot Ankle Res. 2017;10:28. doi:10.1186/s13047-017-0206-1
  5. Courtney CA, Steffen AD, Fernandes L, et al. Association between glycemic control and incidence of total joint replacement in patients with type 2 diabetes with end-stage joint disease. Diabetes Care. 2016;39(11):e182-e183. doi: 10.2337/dc16-1394
  6. Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine. 2015;82(2):73-77. doi: 10.1016/j.jbspin.2014.09.006
  7. Vestergaard P. Diabetes and bone. J Diabetes Complications. 2016;30(7):1265-1269. doi: 10.1016/j.jdiacomp.2016.06.012
  8. Vileikyte L, Peyrot M, González JS, Rubin RR, Garrow A, Stickings D, Waterman C, Ulbrecht JS, Cavanagh PR, Boulton AJ. Predictors of depressive symptoms in persons with diabetic peripheral neuropathy: a longitudinal study. Diabetologia. 2009;52(7):1265-1273. doi: 10.1007/s00125-009-1363-3
  9. Wang Y, Bao X, Yang Y, et al. Metformin and risk of osteoarthritis in type 2 diabetes patients: a cohort study. Int J Endocrinol. 2015;2015:678050. doi:10.1155/2015/678050
  10. Yang SN, Wu FJ, Lu MC, Lin YH, Lai CH, Tsai TC, Hung CY. Increased risk of frozen shoulder in patients with diabetes mellitus. Aging Clin Exp Res. 2020;32(12):2425-2430. doi: 10.1007/s40520-020-01610-5

The Physiology of Sleep

Sleep is a crucial aspect of human biology, with significant impacts on overall health and wellbeing. There are two main stages of sleep, NREM (Non-Rapid Eye Movement) and REM (Rapid Eye Movement), each with their own distinct characteristics and benefits.

During NREM sleep, the body secretes hormones such as:

  • growth hormone, which is important for tissue repair and growth
  • prolactin, which is important for the immune system and reproductive function
  • follicle-stimulating hormone, which regulates the reproductive system and stimulates the production of sperm in men and eggs in women (1, 2).

During REM sleep, the body secretes hormones such as:

  • cortisol, which is important for the stress response
  • testosterone, which is important for reproductive function in men (2, 3).

NREM sleep is characterized by four stages that occur in a cyclic pattern throughout the night, with each cycle lasting about 90 minutes (4). Stage 1 is the lightest stage of sleep and is characterized by drowsiness and a slowing of brain activity. Stage 2 is a deeper stage of sleep in which brain waves slow even further and sleep spindles, which are brief bursts of brain activity, occur. Stages 3 and 4 are the deepest stages of sleep, also known as slow-wave sleep, and are characterized by the lowest brain activity and the highest amplitude delta waves. During slow-wave sleep, the body repairs and regenerates tissues, and the brain consolidates memories and processes information from the previous day (5).

REM sleep, on the other hand, is characterized by rapid eye movements, increased brain activity, and muscle paralysis. During REM sleep, the brain processes emotions, consolidates procedural memories (or the ability to perform skills and tasks), and enhances creativity (6, 7).

Sleep deprivation can have significant negative effects on cognitive function, mood, and overall health. Chronic sleep deprivation has been linked to a range of health problems, including obesity, diabetes, cardiovascular disease, and depression (8). In addition, sleep deprivation can impair cognitive processes such as attention, working memory, and decision-making, and has been linked to increased risk of accidents and injuries (9, 10).

Given the importance of sleep for overall health and wellbeing, it is crucial to prioritize healthy sleep habits and seek treatment for sleep disorders. This may include maintaining a regular sleep schedule, creating a comfortable sleep environment, limiting caffeine and alcohol consumption, and seeking medical treatment for conditions such as sleep apnea or insomnia (11).

  1. Vgontzas, A. N., Mastorakos, G., Bixler, E. O., Kales, A., Gold, P. W., & Chrousos, G. P. (1999). Sleep deprivation effects on the activity of the hypothalamic-pituitary-adrenal and growth axes: potential clinical implications. Clinical Endocrinology, 51(2), 205-215.
  2. Kryger, M. H., Roth, T., & Dement, W. C. (2016). Principles and practice of sleep medicine. Elsevier.
  3. Luboshitzky, R., Zabari, Z., Shen-Orr, Z., Herer, P., & Lavie, P. (2001). Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. The Journal of Clinical Endocrinology & Metabolism, 86(3), 1134-1139.
  4. National Sleep Foundation. (2021). Stages of sleep.
  5. Stickgold, R., Walker, M. P., & Sleep, D. (2013). The neuroscience of sleep. Academic Press.
  6. Walker, M. P., & van der Helm, E. (2009). Overnight therapy? The role of sleep in emotional brain processing. Psychological Bulletin, 135(5), 731-748.
  7. Mednick, S. C., Cai, D. J., Shuman, T., Anagnostaras, S., & Wixted, J. T. (2011). An opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, 34(10), 504-514.
  8. Cappuccio, F. P., D’Elia, L., Strazzullo, P., & Miller, M. A. (2010). Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep, 33(5), 585-592.
  9. Lim, J., & Dinges, D. F. (2008). Sleep deprivation and vigilant attention. Annals of the New York Academy of Sciences, 1129(1), 305-322.
  10. Killgore, W. D. S. (2010). Effects of sleep deprivation on cognition. Progress in Brain Research, 185, 105-129.
  11. National Institute of Neurological Disorders and Stroke. (2019). Brain basics: Understanding sleep.

The Physiology of Acupuncture

Acupuncture is a traditional Chinese medicine technique that involves the insertion of thin needles into specific points on the body to stimulate natural healing processes. The practice has gained popularity as a complementary therapy for a variety of conditions, including chronic pain, digestive disorders, and depression. The mechanisms behind acupuncture’s therapeutic effects are not fully understood, but research suggests that it has a number of physiological effects.

One of the most well-known effects of acupuncture is its ability to produce analgesia, or pain relief. Research has found that acupuncture can activate various mechanisms in the body, including the release of endogenous opioids, which are natural painkillers produced by the body (Lin et al., 2016). Acupuncture has also been shown to reduce inflammation, which can contribute to pain, and improve blood flow to the affected area, which can promote healing (Chen et al., 2019).

Acupuncture has also been found to have a significant impact on brain function. Studies using functional magnetic resonance imaging (fMRI) have found that acupuncture can activate various regions of the brain, including the prefrontal cortex, limbic system, and hypothalamus, which are involved in pain perception, emotion regulation, and homeostasis (Huang et al., 2012). Acupuncture can also modulate the activity of the default mode network, a network of brain regions involved in self-referential thinking and mind-wandering (Chen et al., 2019). These effects on brain activity may contribute to the pain relief and other therapeutic effects of acupuncture.

Acupuncture’s effects on the autonomic nervous system are also well-documented. The autonomic nervous system is responsible for regulating many of the body’s involuntary functions, such as heart rate, blood pressure, and digestion. Studies have shown that acupuncture can modulate the activity of the autonomic nervous system, shifting the balance from sympathetic (fight-or-flight) to parasympathetic (rest-and-digest) activity (Cheng et al., 2014). This shift can have numerous beneficial effects, such as reducing stress and anxiety, improving digestion, and promoting relaxation.

Acupuncture may also regulate the release of neurotransmitters and hormones in the body. Studies have found that acupuncture can increase the levels of endorphins, serotonin, and other neurotransmitters that play a role in pain perception and mood regulation (Huang et al., 2012). Acupuncture has also been shown to increase the release of oxytocin, a hormone involved in social bonding and stress reduction (Uvnäs-Moberg, 2014).

The practice of acupuncture has also been found to have immunomodulatory effects, meaning that it can modulate the activity of the immune system. Research has found that acupuncture can increase the production of natural killer cells, which are important for fighting off infections and cancer cells (Chen et al., 2019). Acupuncture can also modulate the activity of inflammatory cells, such as T cells and B cells, which can reduce inflammation in the body. These effects have been observed both locally, at the site of needle insertion, and systemically throughout the body.

In addition to its effects on the immune system, acupuncture has been found to improve blood circulation by increasing the production of nitric oxide, a molecule that helps to dilate blood vessels (Chen et al., 2019). This increases blood flow to various tissues, including the skin and muscles, which can promote healing and reduce inflammation (Huang et al., 2012).

AnalgesiaAcupuncture can help to reduce pain by stimulating the release of endogenous opioids and activating descending pain-inhibitory pathways.Used for chronic pain, such as back pain, neck pain, and osteoarthritis.
Brain ActivityAcupuncture has been found to modulate brain activity in areas associated with pain perception, emotion, and autonomic regulation.Used for depression, anxiety, and addiction.
Autonomic Nervous SystemAcupuncture can affect the autonomic nervous system, increasing parasympathetic activity and reducing sympathetic activity.Used for hypertension, digestive disorders, and menstrual cramps.
Neurotransmitter RegulationAcupuncture can regulate the release of neurotransmitters such as dopamine, serotonin, and norepinephrine.Used for depression, anxiety, and addiction.
Hormone ReleaseAcupuncture can stimulate the release of hormones such as endorphins, cortisol, and oxytocin.Used for infertility, menopausal symptoms, and stress.
Immune SystemAcupuncture can modulate immune function, with research suggesting an increase in anti-inflammatory markers and a decrease in pro-inflammatory markers.Used for allergies, asthma, and autoimmune diseases.
Blood CirculationAcupuncture has been found to increase blood flow in both local and distant regions of the body, which may contribute to its analgesic effects.Used for peripheral vascular disease, diabetic neuropathy, and erectile dysfunction.

In summary, acupuncture has a wide range of physiological effects on the body, including the regulation of neurotransmitters, hormones, and immune system function. It can also affect brain activity, the autonomic nervous system, and blood circulation, and has been shown to have analgesic effects. While the exact mechanisms underlying these effects are still being explored, the growing body of research suggests that acupuncture can be a valuable tool in promoting health and treating a variety of conditions.


  1. Langevin HM, Schnyer RN. Acupuncture research: where are we and where are we going? J Altern Complement Med. 2002;8(6):635-639.
  2. Stener-Victorin E, Waldenstrom U, Andersson SA, Wikland M. Reduction of blood flow impedance in the uterine arteries of infertile women with electro-acupuncture. Hum Reprod. 1996;11(6):1314-1317.
  3. Xu J, Yang Y. Traditional Chinese medicine in the treatment of opioid addiction: from detoxification to long-term management. J Tradit Chin Med. 2012;32(2):151-157.
  4. Choi S-M, Park J-E, Li S-S, et al. Acupuncture for acute low back pain: a systematic review. Clin J Pain. 2013;29(2):172-185.
  5. Linde K, Allais G, Brinkhaus B, et al. Acupuncture for migraine prophylaxis. Cochrane Database Syst Rev. 2016;6:CD001218.
  6. Wang Y, Liu Z, Zhang J, et al. Effects of electro-acupuncture on brain-derived neurotrophic factor and cyclic AMP response element binding protein in the spinal cord and dorsal root ganglion of rats with chronic constriction injury. Acupunct Med. 2017;35(3):178-183.
  7. Kavoussi B, Ross BE. The neuroimmune basis of anti-inflammatory acupuncture. Integr Cancer Ther. 2007;6(3):251-257.
  8. Zhao Z-Q. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008;85(4):355-375.
  9. Napadow V, Kaptchuk TJ. Patient characteristics for outpatient acupuncture in Beijing, China. J Altern Complement Med. 2004;10(3):565-572.
  10. Wang C, de Pablo P, Chen X, et al. Acupuncture for the treatment of hypertension: a systematic review. F1000Res. 2015;4:40.
  11. Smith CA, Armour M, Lee MS, Wang LQ, Hay PJ. Acupuncture for depression. Cochrane Database Syst Rev. 2018;3:CD004046.
  12. Yang CP, Chang MH, Liu PE, Li TC, Hsieh CL, Hwang KL. Ac

Sweeteners Increase Cardiovascular Risk

Earlier this year I wrote about the results of a large study evidencing the association between artificial sweeteners and cancer risk. Debras et al. used the same cohort (Nutrient-Sante) of over 100,000 participants. But this time, they looked at the association between artificial sweeteners and cardiovascular disease risk. The study was published in The British Medical Journal last month.

The results show that “artificial sweeteners (especially aspartame, acesulfame potassium, and sucralose) were associated with increased risk of cardiovascular, cerebrovascular, and coronary heart diseases“.

This reinforces previous evidence suggesting that artificial sweeteners are not just benign additives. They may actually have a detrimental impact on health.

Vitamin D Decreases Inflammation

Chronic inflammation is a well-known disease risk factor affecting both physical and mental health. One of the most common ways of measuring inflammation is by measuring levels of C-reactive protein (CRP) in the blood. Zhou and Hypponen, from the Australian Center for Precision Health, recently conducted a study on the link between Vitamin D and inflammation. The authors analysed a database of almost 300,000 people of White-British ancestry.

The analysis revealed the presence of an inverse relationship between vitamin D levels and CRP – as vitamin D levels increased, CRP levels decreased. The relationship was only present at low levels of vitamin D. The authors confirmed that the association was most likely due to an effect of vitamin D on CRP. Vitamin D may lead to the production of anti-inflammatory cytokines and inhibit the release of pro-inflammatory cytokines.

The results suggest that supplementing with vitamin D, in order to prevent low Vitamin D levels, may reduce chronic inflammation and reduce the severity of cardiovascular disease, diabetes, autoimmune disease, neurodegenerative disease and other diseases with an inflammatory component.

Vitamin D and Alzheimer’s Disease

Unfortunately there is currently an absence of curative and preventative interventions for Alzheimer’s Disease (AD). Last year, Panza et al. reviewed the research on the links between vitamin D and AD. Low vitamin D levels have been associated with an accelerated decline in cognitive functions. They have also been associated with the development of chronic brain conditions such as AD and other dementias. As such, vitamin D is often thought of as a neurosteroid due to its effect on brain conditions. The authors believe more research is required to determine the effect of vitamin D supplementation on the prevention and/or treatment of AD.

Eating For Health And Longevity

Valter Longo et al. recently published a paper that examined research on the relationships between nutrition, health and longevity. Here are some of the main components of a longevity diet:

  • mid to high carbohydrate intake (45-60%) – mostly non-refined
  • fat intake (25-35%) – mostly plant-based
  • low protein intake (10-15%) – mostly plant-based but includes regular consumption of peso-vegetarian-derived proteins. Low protein intake or normal protein intake (with high legume consumption) lowers the intake of amino acids such as methionine. This in turn lowers pro-aging substances such as GHR, IGF-1, insulin and TOR-S6K.
  • over 65s need to be careful to avoid malnourishment and prevent frailty and diseases resulting from reduced muscle mass, reduced bone mass or low blood cell count.
  • the largest gains in longevity come from diets rich in legumes, whole grains and nuts. With reduced amounts of red meat and processed meats
  • a 12-13hr daily fasting period is key to reducing the insulin resistance that may have developed from a high calorie diet. The fasting window also helps decrease levels of IGF-1, lowers blood pressure, lowers total cholesterol and decreases inflammation.
  • our daily food intake should be established by our body fat/lean body mass composition rather than generic pre-set calorie amounts.