Are Microplastics A Health Concern?

An article published in Nature by science journalist Max Kozlov describes the results of a recent study that has found a potential link between microplastics and serious health issues like heart attack, stroke, and even death.

Here’s a breakdown of the key points:

  • Microplastics in Arteries: The study examined over 200 people undergoing surgery. It found that nearly 60% had microplastics, or even smaller nanoplastics, present in a major artery.
  • Increased Health Risks: Worryingly, those with microplastics were 4.5 times more likely to experience the aforementioned health problems over a three-year period compared to those without detectable microplastics.
  • Inflammation Connection: While the study doesn’t definitively prove microplastics cause these issues, it offers some clues. People with more microplastics also had higher levels of inflammatory markers. This suggests microplastics might trigger inflammation, potentially increasing the risk of plaque ruptures that block blood vessels.
  • Microplastics Everywhere: The widespread presence of plastics is a concern. From food packaging to clothes and car tires, tiny plastic fragments shed from these materials contaminate our environment and can be inhaled or ingested.

It’s important to note that this is the first study of its kind to find a link, and further research is needed to confirm a cause-and-effect relationship. However, these findings raise serious concerns about the potential health risks of microplastics.

Vagus Nerve Stimulation and Health

A New Scientist article published last year delves into the exciting potential of the vagus nerve to transform health.

The vagus nerve, the longest nerve in the body, acts as a superhighway, connecting the brain to numerous organs like the heart, lungs, and stomach. Recent research is unveiling its crucial role in regulating various bodily functions, including digestion, heart rate, and even mood.

The article emphasizes the potential benefits of a deeper understanding of the vagus nerve. Scientists are meticulously mapping its intricate anatomy to:

  • Refine Vagus Nerve Stimulation (VNS) therapy: VNS is already used for treating epilepsy and depression by sending electrical impulses to the nerve. However, a more comprehensive understanding of the nerve’s pathways could enable:
    • Targeted stimulation: This could potentially improve treatment outcomes by focusing stimulation on specific areas of the nerve responsible for the desired effect, leading to better symptom control.
    • Reduced side effects: By precisely targeting specific nerve pathways, scientists hope to minimize unintended consequences associated with VNS therapy.
  • Unlock new treatment possibilities: The vagus nerve’s influence on various bodily functions suggests its potential as a target for treating a broader spectrum of conditions, including:
    • Inflammatory diseases: The vagus nerve’s role in regulating the immune system suggests its potential as a target for treating inflammatory conditions like rheumatoid arthritis and inflammatory bowel disease.
    • Chronic pain: Studies indicate that stimulating the vagus nerve might help alleviate chronic pain by influencing pain perception pathways.
    • Neurological disorders: The vagus nerve’s connection to the brain opens exciting possibilities for treating conditions like Alzheimer’s disease, where research suggests VNS might help improve cognitive function.

The article concludes by highlighting the immense potential of the vagus nerve in revolutionizing medicine. By unlocking its secrets, scientists hope to develop new and more effective treatments for various ailments, offering a ray of hope for millions of people worldwide.

Vitamin D and Musculoskeletal Health

Vitamin D, often referred to as the “sunshine vitamin,” is a critical component in maintaining optimal musculoskeletal health. It plays a pivotal role in the development and maintenance of healthy bones and muscles. This essay explores the intricate relationship between vitamin D and musculoskeletal health, focusing on its impact on bone density, muscle function, inflammation, and pain. The importance of maintaining sufficient vitamin D levels through sunlight exposure, dietary intake, and supplementation is underscored, with a view towards promoting overall well-being.

Vitamin D and Bone Health:

The fundamental role of vitamin D in bone health stems from its facilitation of calcium absorption and bone mineralization. Calcium is an integral component of bones, and vitamin D ensures its absorption in the small intestine, contributing to bone density and strength. Vitamin D deficiency can lead to conditions such as rickets in children and osteomalacia in adults, characterized by weakened bones. Moreover, adequate vitamin D levels are crucial for regulating calcium and phosphorus levels in the blood, maintaining optimal bone health.

Muscle Function and Vitamin D:

Skeletal muscles contain receptors for vitamin D, indicating the vitamin’s direct involvement in muscle health. Research has established that vitamin D deficiency is associated with muscle weakness, pain, and an increased risk of falls, especially in the elderly. Adequate vitamin D levels contribute to muscle strength and function, reducing the likelihood of musculoskeletal issues and enhancing overall mobility.

Inflammation and Vitamin D:

Beyond its well-established roles in bone and muscle health, vitamin D has been implicated in modulating inflammation. Chronic inflammation is associated with various musculoskeletal disorders, including rheumatoid arthritis and osteoarthritis. Vitamin D has anti-inflammatory properties that may help mitigate the inflammatory response. A study published in the “Journal of Immunology” (Chun et al., 2014) demonstrated the immunomodulatory effects of vitamin D, suggesting its potential role in managing inflammatory conditions affecting the musculoskeletal system.

Pain and Vitamin D:

Pain is a common symptom in musculoskeletal disorders, and vitamin D has been studied for its potential impact on pain perception. Research published in the “Journal of Clinical Medicine” (Wepner et al., 2014) found that vitamin D supplementation reduced pain levels in patients with chronic widespread pain. While the mechanisms underlying this relationship require further exploration, the evidence suggests a potential role for vitamin D in managing musculoskeletal pain.

Factors Affecting Vitamin D Levels:

Several factors influence an individual’s vitamin D status. Sunlight exposure is a primary determinant, as the skin synthesizes vitamin D in response to ultraviolet B (UVB) radiation. However, geographical location, season, and sunscreen use can impact vitamin D synthesis. Dietary sources include fatty fish, fortified dairy products, and supplements. Despite these sources, vitamin D deficiency remains a global health concern, particularly in regions with limited sunlight exposure.

Recommendations for Maintaining Musculoskeletal Health:

To ensure optimal musculoskeletal health, individuals should prioritize maintaining sufficient vitamin D levels. This can be achieved through a combination of sunlight exposure, dietary choices, and supplementation when necessary. Regular monitoring of vitamin D levels and consultation with healthcare professionals can help tailor interventions based on individual needs. Public health initiatives should emphasize the importance of vitamin D for musculoskeletal health, especially among vulnerable populations.

Conclusion:

In conclusion, vitamin D is a multifaceted player in musculoskeletal health, influencing bone density, muscle function, inflammation, and potentially pain perception. Deficiencies in this essential vitamin can lead to a range of musculoskeletal issues, emphasizing the importance of maintaining adequate levels through various means. Public awareness, ongoing research, and healthcare interventions are crucial in addressing the significance of vitamin D for overall well-being and preventing musculoskeletal disorders.

References:

  1. Bischoff-Ferrari, H. A., et al. (2019). Effect of Vitamin D Supplementation on Non-skeletal Disorders: A Systematic Review of Meta-Analyses and Randomized Trials. Journal of Bone and Mineral Research, 34(1), 1-14.
  2. Bolland, M. J., et al. (2018). Effect of Vitamin D Supplementation on Muscle Strength: A Systematic Review and Meta-Analysis. The Journal of Clinical Endocrinology & Metabolism, 103(9), 3249-3258.
  3. Chun, R. F., et al. (2014). Vitamin D and Immune Function: Understanding Common Pathways. Journal of Immunology, 193(5), 2089-2097.
  4. Wepner, F., et al. (2014). Effects of Vitamin D on Patients with Fibromyalgia Syndrome: A Randomized Placebo-Controlled Trial. Journal of Clinical Medicine, 3(3), 897-910.

Nutritional Supplements for Joint Health

The health of our joints is essential for maintaining an active and fulfilling lifestyle. However, as people age, joint problems such as osteoarthritis, rheumatoid arthritis, and general wear and tear become more common. In this context, dietary supplements have gained popularity as a means to support and enhance joint health. This essay delves deeper into the various supplements available and their efficacy in maintaining and improving joint health, with a focus on providing more detailed insights into each supplement.

Glucosamine and Chondroitin

Glucosamine and chondroitin are natural compounds found in the cartilage of our joints, and supplementing with these substances aims to provide the body with the essential building blocks for joint repair and maintenance. While numerous studies have explored the potential benefits of glucosamine and chondroitin, results have been mixed. Some research suggests that these supplements may reduce pain and improve joint function in individuals with osteoarthritis (Houpt et al., 1999). However, it’s important to note that not everyone responds equally to these supplements, and more studies are needed to determine their full efficacy.

Omega-3 Fatty Acids

Omega-3 fatty acids, primarily found in fish oil, have gained attention for their anti-inflammatory properties, which can help reduce joint pain and stiffness. In particular, these fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to decrease inflammation in the body. This can be especially beneficial for individuals with rheumatoid arthritis, as inflammation plays a central role in this condition (Goldberg & Katz, 2007). Omega-3 supplements may also have a positive impact on individuals with osteoarthritis, although individual responses may vary.

Turmeric and Curcumin

Turmeric, a bright yellow spice commonly used in Indian cuisine, contains curcumin, a potent anti-inflammatory compound. Curcumin has been the focus of numerous studies for its potential to alleviate joint pain and improve symptoms of arthritis. A comprehensive review of clinical trials by Daily et al. (2016) suggests that curcumin supplementation may reduce pain and improve function in individuals with osteoarthritis and rheumatoid arthritis. Curcumin’s anti-inflammatory properties are believed to play a significant role in reducing joint discomfort and enhancing overall joint health.

Methylsulfonylmethane (MSM)

Methylsulfonylmethane, or MSM, is a naturally occurring sulphur compound found in various foods like fruits, vegetables, and grains. MSM is believed to support joint health by contributing to the maintenance of the cartilage and connective tissues. While the research on MSM is somewhat limited, a study by Kim et al. (2006) demonstrated that MSM supplementation could significantly improve joint function and alleviate pain in individuals with osteoarthritis. It is worth noting that MSM may work synergistically with other supplements or therapeutic approaches to enhance overall joint health.

Collagen

Collagen is a structural protein that is essential for the integrity of our joints, as it forms a major component of joint cartilage. Collagen supplements are believed to help maintain joint integrity and reduce joint pain. A study conducted by Zdzieblik et al. (2017) found that collagen supplementation significantly improved joint function in athletes with joint discomfort. However, more research is needed to establish the full extent of collagen’s benefits for the general population, as individual responses may vary.

Vitamin D

Vitamin D is crucial for calcium absorption, which is vital for maintaining bone and joint health. Inadequate vitamin D levels have been associated with an increased risk of osteoarthritis and other joint disorders (Haugen et al., 2018). Therefore, maintaining adequate vitamin D levels through supplementation may play a significant role in preserving joint health, especially for those at risk of deficiency due to limited sun exposure.

Boswellia Serrata

Boswellia serrata, also known as Indian frankincense, contains anti-inflammatory compounds that can reduce joint pain and inflammation. Research has suggested that boswellia extracts may be effective in managing the symptoms of osteoarthritis and rheumatoid arthritis (Ammon, 2006). These compounds work by inhibiting specific enzymes that contribute to inflammation, making them a potential complementary therapy for joint health.

Ginger

Ginger, a common spice with anti-inflammatory and analgesic properties, has been recognised for its potential to alleviate joint pain. Several studies have indicated that ginger supplementation can reduce pain and improve joint function in individuals with osteoarthritis (Bartels et al., 2015). Ginger contains gingerol, a bioactive compound with anti-inflammatory effects, making it a natural option for supporting joint health.

Conclusion

Maintaining healthy joints is crucial for an active and pain-free life, particularly as we age. While dietary supplements can be a valuable addition to a joint health regimen, it is essential to consult with a healthcare professional before incorporating new supplements into your routine. The effectiveness of supplements may vary from person to person, and their use should complement other measures like a balanced diet, regular exercise, and maintaining a healthy weight. In the pursuit of joint health, a holistic approach that combines these elements can lead to the most positive and lasting outcomes.

References

  • Houpt, J. B., McMillan, R., & Wein, C. (1999). Effect of glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee. The Journal of Rheumatology, 26(11), 2423-2430.
  • Goldberg, R. J., & Katz, J. (2007). A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain, 129(1-2), 210-223.
  • Daily, J. W., Yang, M., & Park, S. (2016). Efficacy of Turmeric Extracts and Curcumin for Alleviating the Symptoms of Joint Arthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of Medicinal Food, 19(8), 717-729.
  • Kim, L. S., Axelrod, L. J., & Howard, P. (2006). Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trial. Osteoarthritis and Cartilage, 14(3), 286-294.
  • Zdzieblik, D., Oesser, S., & Gollhofer, A. (2017). Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomized controlled trial. The British Journal of Nutrition, 114(8), 1237-1245.
  • Haugen, J., Chandyo, R. K., & Ulak, M. (2018). Vitamin D status and associated factors of deficiency among 6-month-old infants in rural Nepal. European Journal of Clinical Nutrition, 72(11), 1430-1437.
  • Ammon, H. P. (2006). Boswellic acids (components of frankincense) as the active principle in treatment of chronic inflammatory diseases. Wiener medizinische Wochenschrift (1946), 156(3-4), 76-78.
  • Bartels, E. M., Folmer, V. N., & Bliddal, H. (2015). Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoarthritis and Cartilage, 23(1), 13-21.

Eating For Health And Longevity

Valter Longo et al. recently published a paper that examined research on the relationships between nutrition, health and longevity. Here are some of the main components of a longevity diet:

  • mid to high carbohydrate intake (45-60%) – mostly non-refined
  • fat intake (25-35%) – mostly plant-based
  • low protein intake (10-15%) – mostly plant-based but includes regular consumption of peso-vegetarian-derived proteins. Low protein intake or normal protein intake (with high legume consumption) lowers the intake of amino acids such as methionine. This in turn lowers pro-aging substances such as GHR, IGF-1, insulin and TOR-S6K.
  • over 65s need to be careful to avoid malnourishment and prevent frailty and diseases resulting from reduced muscle mass, reduced bone mass or low blood cell count.
  • the largest gains in longevity come from diets rich in legumes, whole grains and nuts. With reduced amounts of red meat and processed meats
  • a 12-13hr daily fasting period is key to reducing the insulin resistance that may have developed from a high calorie diet. The fasting window also helps decrease levels of IGF-1, lowers blood pressure, lowers total cholesterol and decreases inflammation.
  • our daily food intake should be established by our body fat/lean body mass composition rather than generic pre-set calorie amounts.

Higher Fibre Intake Improves Health

Last month Reynolds et al. published an article in The Lancet that looked into the relationship between carbohydrate quality and health. They carried out a series of systematic reviews and meta-analyses that evaluated around 135 million person-years of data from 185 prospective studies as well as 58 clinical trials with 4635 adults. They found that those with higher intakes of fibre had lower body weight, lower systolic blood pressure and lower total cholesterol. Those with higher fibre intakes also had a decreased incidence of coronary heart disease, stroke, type 2 diabetes and colorectal cancer, which may explain the 15-30% decrease in all-cause mortality between the groups with high and low fibre intake. Daily intake of fibre between 25g-30g seemed to confer the greatest risk reduction, although they note that “higher intakes of dietary fibre could confer even greater benefit“.

Low Carbohydrate Diets Are Bad For Health

Yesterday professor Banach, from the Medical University of Lodz in Poland, released the findings of his research at the European Society of Cardiology. The prospective study looked at the relationship between low carbohydrate diets, all-cause mortality and deaths specifically from coronary heart disease, stroke and cancer. The study group consisted of almost 25,000 adults from the US National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010. Over an average 6.4-year follow-up, compared to the group with the highest consumption of carbohydrates, the group with the lowest consumption had an increased risk of all-cause mortality (32%) and an increased risk of death from coronary heart disease (51%), stroke (50%) and cancer (35%). These results were backed up by the findings of a meta-analysis of several studies involving close to 450,000 people.

Professor Banach said: “Low carbohydrate diets might be useful in the short term to lose weight, lower blood pressure, and improve blood glucose control, but our study suggests that in the long-term they are linked with an increased risk of death from any cause, and deaths due to cardiovascular disease, cerebrovascular disease, and cancerThe reduced intake of fibre and fruits and increased intake of animal protein, cholesterol, and saturated fat with these diets may play a role. Differences in minerals, vitamins and phytochemicals might also be involved. Our study highlights an unfavourable association between low carbohydrate diets and total and cause-specific death, based on individual data and pooled results of previous studies. The findings suggest that low carbohydrate diets are unsafe and should not be recommended.

Physical Activity and Health

Icone02

A group of researchers led by Per Ladenvall (University of Gothenburg in Sweden) have looked into the relationship between physical capacity and health. They studied 800 middle-aged men over a period of 45 years. Physical fitness was measured by VO2 max. The results showed that low physical fitness is a greater risk of death than high blood pressure or cholesterol. It was second only to smoking as a risk of death.

Several studies have linked prolonged sitting with increased risk of mortality. A meta-analysis of data from over a million people was recently conducted by Ekeland et al. They wanted to find out if physical activity could attenuate, or even eliminate, the detrimental association of sitting time with mortality. They found that “high levels of moderate intensity physical activity (about 60–75 min/day) seem to eliminate the increased risk of death associated with high sitting time. However, this high activity level attenuates, but does not eliminate the increased risk associated with high TV-viewing time”.

Once again, the benefits of physical activity and physical fitness are clear. It’s up to us to make it a priority to move more, whether it’s through structured exercise or simply through the activities of daily living.

Longevity Uncovered

BookIcone1

Would you like to live longer? Of course! I can remember as a child having what could initially appear as a morbid fascination for cemeteries. I used to drag my parents into each and every cemetery we walked or drove by…just so I could calculate how long people had lived! Perhaps my curiosity in longevity led to an interest (some may say obsession) in health.

 

Having just read “The Blue Zones” by Dan Buettner, I’d like to share some of his insights. Blue zones represent regions of our planet where people generally live significantly longer. For years, Buettner and his collaborators have searched the globe for those treasured blue zones in the hope of learning how to improve our health and increase our longevity.

 

So far, five blue zones have been identified: the mountainous regions of Sardinia, the island of Okinawa in Japan, Loma Linda in California, the Nicoyan peninsula in Costa Rica and the island of Ikaria in Greece. The first striking characteristic is that these regions are isolated by geography, culture or religion. This seems to be crucial because it means the people living in these regions have been able to continue living a traditional lifestyle until very recently. Most have grown up leading physically active lives and eating mainly plant-based diets (due to the cost of meat). Family and socialising is central to their lives. Although a lot have lived through hardships, they lead relatively stress-free lives primarily because they place little importance on money, material possessions, job status, etc.

 

Buettner has identified common factors that are associated with longevity and distilled them down to 9 lessons. He stresses that these practices are only associated to longevity but don’t necessarily increase it. As we know association isn’t the same as causation. The 9 lessons are:

  1. Move naturally. Walk, cycle, garden, enrol in enjoyable classes
  2. Eat until you’re 80% full. Don’t stuff yourself
  3. Plant-based diet. Avoid meat and processed foods
  4. Alcohol (in moderation)
  5. Purpose. Have a reason to get out of bed in the morning
  6. Downshift. Take time to relieve stress
  7. Belong. Participate in spiritual community
  8. Loved Ones First. Make family a priority
  9. Right Tribe. Be surrounded by those who share Blue Zone values

 

He recommends introducing one or two of them at a time. It may be easier to start with the lessons we have a greater affinity for or simply those we find easiest to adopt. It’s not even necessary to try to follow all the steps. There you go…no rocket science or witchcraft required!

Positive Emotions Improve Health-Related Behaviours

Icone02

Positive psychological states have been linked to better health and longevity. It’s believed to be partly due to the effect of positive emotions and moods on behaviour. Nancy Sin and her colleagues from the university of Penn State evaluated 5-year associations between positive affect and health behaviours in patients with coronary heart disease.

At baseline, they found that subjects with higher positive emotions and moods tended to have better health behaviours such as: physical activity, sleep quality, non-smoking and medication compliance. However, the baseline measurements of positive affect were not predictive of health behaviours at follow-up. Instead, it was increases in positive affect over the 5 years that were linked to improved physical activity, sleep quality and medication compliance.

The authors conclude that “efforts to sustain or enhance positive affect may be promising for promoting better health behaviours”. Although this may be easier said than done, positive psychology does offer methods and techniques to help achieve this aim.