Changes in Gait, Balance and Strength with Aging

The recent article “Age-related changes in gait, balance, and strength parameters: A cross-sectional study” published in PLOS One by Rezaei et al. examines the impact of aging on various physical performance measures such as gait (walking patterns), balance, and muscular strength. The study employs a cross-sectional design, meaning it analyses data collected at one specific point in time across a diverse sample of adults ranging in age, with the objective of understanding how these physical parameters change as people grow older.

Background and Motivation

The motivation behind this study stems from the known correlation between age-related declines in physical abilities and increased risk of falls, decreased independence, and overall diminished quality of life. As gait, balance, and strength are crucial to maintaining mobility and preventing falls, identifying when and how these factors decline can inform interventions that help older adults retain their independence longer. The study also aims to provide insights for clinicians and healthcare professionals to tailor preventative measures and rehabilitation strategies according to age-specific needs.

Methods

The researchers recruited a large group of participants spanning various age groups and used a range of objective measurements to assess gait, balance, and strength. For gait analysis, the study evaluated variables such as walking speed, stride length, and step time variability. Balance was measured through static and dynamic assessments, which included tests for single-leg standing time and balance stability during movement. Strength was assessed primarily through grip strength and lower limb muscle power tests, which are widely accepted indicators of general muscular strength in ageing populations.

Findings

The study found significant age-related declines across all parameters, with notable differences between age groups:

  1. Gait: There was a clear trend of reduced walking speed and shorter stride length with increasing age, coupled with an increase in gait variability. These changes often started to manifest in middle-aged adults and progressively worsened in older age groups.
  2. Balance: Balance deficits were observed as early as middle age, with a marked reduction in single-leg standing time and stability during dynamic movements in older adults. The results highlight that both static and dynamic balance abilities diminish with age, increasing the risk of falls.
  3. Strength: Muscle strength, particularly grip strength and lower limb power, also showed a steady decline with age. This decline was particularly significant in participants over 60 years, indicating that muscle weakness becomes more prominent and impactful in later years.

Interpretation and Implications

The findings suggest that the aging process is associated with measurable declines in gait, balance, and strength, which collectively heighten the risk of falls and mobility impairments. The study highlights that these changes do not occur suddenly but rather develop gradually, implying that early interventions in middle-aged adults could be beneficial. The researchers suggest that routine assessment of gait, balance, and strength could be integrated into clinical practice to detect early declines and support proactive management strategies.

Conclusion

In summary, this cross-sectional study provides valuable insights into how age impacts physical performance parameters crucial for mobility and independence. The age-related deterioration in gait, balance, and strength underlines the importance of early assessment and targeted exercise or rehabilitation interventions aimed at mitigating these declines. By identifying the specific onset of these changes, healthcare providers can better design preventative programs tailored to the needs of ageing adults, thereby potentially enhancing quality of life and reducing the social and economic burdens associated with falls and functional impairments in the elderly population.

This study reinforces the significance of personalised health strategies and preventive measures in addressing the age-related decline in physical function, advocating for policies that encourage physical activity and strength maintenance from a younger age.

Rugby, Concussion and Neurodegenerative Disease

The article Concussion-Related Biomarker Variations in Retired Rugby Players and Implications for Neurodegenerative Disease Risk: The UK Rugby Health Study delves into the long-term health impacts of concussions on retired rugby players, particularly focusing on the risk of neurodegenerative diseases like Alzheimer’s, Parkinson’s, and chronic traumatic encephalopathy (CTE). The study aims to explore the relationship between repeated head injuries and variations in specific biomarkers associated with brain health, which may indicate increased susceptibility to these diseases.

Key areas of focus include:

  1. Biomarker Identification:
    The study identifies several biomarkers in the blood and cerebrospinal fluid (CSF) that are linked to brain trauma. These biomarkers include proteins like tau and neurofilament light (NFL), both of which are known to rise following concussions and other brain injuries. The analysis of these markers in retired rugby players is crucial in detecting early signs of brain damage.
  2. Concussion History and Biomarker Variations:
    A significant finding from the study is that retired players with a history of multiple concussions showed elevated levels of these biomarkers compared to those with fewer or no reported concussions. This correlation suggests that repeated head impacts may lead to lasting changes in brain structure and function, potentially increasing the risk of cognitive decline or neurodegenerative disease.
  3. Implications for Neurodegenerative Disease Risk:
    The elevated levels of biomarkers such as tau and NFL in retired players may serve as early indicators of brain degeneration, which is often associated with conditions like CTE. The study draws attention to the possibility that these players are at a higher risk of developing neurodegenerative disorders compared to the general population, emphasising the importance of long-term health monitoring.
  4. Preventive and Diagnostic Recommendations:
    Based on the findings, the study calls for better concussion management strategies during athletes’ active careers, particularly in high-contact sports like rugby. Regular monitoring of retired players for biomarker changes could also help in early detection and intervention, potentially mitigating the risk of serious brain diseases. This includes the use of advanced imaging techniques and blood tests to track changes over time.
  5. Broader Impact on Contact Sports:
    The study contributes to the broader understanding of concussion-related brain injuries in contact sports, reinforcing concerns about the long-term health of athletes who experience repeated head trauma. It also raises ethical and medical considerations for rugby and other sports in how they manage and address player health both during and after their careers.

In conclusion, the research highlights a pressing need to reassess how concussions are treated in rugby, not just for immediate recovery, but for long-term brain health. By focusing on biomarker variations, the study offers a new avenue for detecting early signs of neurodegeneration, potentially helping to reduce the incidence of conditions like CTE among retired rugby players.

The Musculoskeletal Syndrome of Menopause

Wright el al. have recently published a review article on the musculoskeletal syndrome of menopause – a complex issue that affects millions of women worldwide. 

The Role of Estrogen in Musculoskeletal Health

Estrogen plays a crucial role in maintaining bone density, muscle mass and tendon structure. It helps to:

  • Stimulate bone formation: Estrogen promotes the activity of osteoblasts, cells responsible for building new bone tissue.
  • Inhibit bone resorption: It reduces the activity of osteoclasts, cells that break down bone tissue.
  • Maintain muscle mass: Estrogen helps to regulate muscle protein synthesis and breakdown, preventing excessive muscle loss.
  • Maintain tendon structure and function: It influences collagen metabolism and maintains optimal tendon stiffness.
  • Maintain healthy joints: Estrogen helps decrease inflammation and maintain joint structure.

When estrogen levels decline during menopause, these processes become imbalanced, leading to bone loss, increased risk of fractures, muscle atrophy, joint pain and stiffness, and increased predisposition to tendinopathies and risk of tendon ruptures.

Risk Factors for Musculoskeletal Syndrome of Menopause

Several factors can increase a woman’s risk of developing musculoskeletal issues during or after menopause:

  • Genetics: A family history of osteoporosis or other bone disorders can increase susceptibility.
  • Lifestyle factors: Smoking, excessive alcohol consumption, and a sedentary lifestyle can contribute to bone loss and muscle weakness.
  • Nutrition: Inadequate intake of calcium and vitamin D can impair bone health.
  • Medical conditions: Certain conditions, such as autoimmune diseases or thyroid disorders, can affect bone metabolism.

Treatment and Prevention Strategies

While there is no cure for the musculoskeletal syndrome of menopause, effective management strategies can help alleviate symptoms and improve quality of life. These include:

  • Hormone replacement therapy (HRT): When used appropriately, HRT can help maintain bone density and reduce the risk of fractures. However, it’s important to discuss the potential risks and benefits with a healthcare provider.
  • Lifestyle modifications: Regular exercise, especially weight-bearing activities, can help strengthen bones and muscles. A balanced diet rich in calcium, vitamin D, and protein is also crucial.
  • Medications: In some cases, medications like bisphosphonates or selective estrogen receptor modulators (SERMs) may be prescribed to treat osteoporosis.
  • Supplements: Calcium and vitamin D supplements can be beneficial for maintaining bone health.

By understanding the causes, risks, and treatment options for the musculoskeletal syndrome of menopause, women can take proactive steps to protect their health and well-being during this important life stage.

Inflammatory Gene Found

Researchers have identified a previously overlooked genetic region linked to chronic inflammatory diseases such as Crohn’s disease and ankylosing spondylitis.

Surprisingly, this DNA segment, often termed a “gene desert” due to its lack of protein-coding genes, has been shown to play a pivotal role in driving inflammation. The study, published in Nature, reveals that this region influences the activity of a gene called ETS2.

ETS2 acts as a master regulator, controlling the inflammatory response within macrophages – immune cells crucial in fighting infection. When overactivated, ETS2 triggers a cascade of inflammatory processes, contributing to the development of chronic inflammatory conditions.

The discovery that this “gene desert” can significantly impact human health is a major breakthrough. By understanding how ETS2 functions, scientists hope to develop new therapeutic strategies to target and reduce inflammation in these diseases. This research opens up new avenues for exploring the complex interplay between genetics and immune function.

Essentially, the study challenges the traditional view of gene deserts as inactive DNA segments and highlights the importance of non-coding regions in human health and disease.

Can Turmeric Cause Liver Disease?

Dina Halegoua-DeMarzio et al. have analysed data from the Drug-Induced Liver Injury Network (DILIN). It suggests a growing risk of liver damage associated with turmeric consumption in the US. Here’s a breakdown of the key findings:

  • Increase in cases: The study identified 10 cases of turmeric-induced liver injury, all reported since 2011. Notably, there’s been a sharper rise since 2017, potentially reflecting increased turmeric use or its combination with black pepper.
  • Patient demographics: The majority of cases (8 out of 10) involved women, with a median age of 56 (ranging from 35 to 71 years old). Most patients identified as white.
  • Type of liver injury: The most common type of injury was hepatocellular (affecting liver cells). One case involved mixed injury.
  • Severity: Five patients required hospitalization, and tragically, one person died due to acute liver failure.
  • Genetic link: Genetic analysis revealed that 7 out of 10 patients carried the HLA-B*35:01 genetic marker. This marker showed a significantly higher frequency in the study group compared to the general population, suggesting a potential link to increased risk.
  • Turmeric and black pepper: Chemical analysis confirmed the presence of turmeric in all tested supplements. Interestingly, 3 out of 7 products also contained piperine, the active ingredient in black pepper, which may enhance curcumin (active component of turmeric) absorption. This raises a question about the potential role of black pepper in these cases.

Overall, the study highlights a potential link between turmeric consumption and severe liver injury, particularly for those with the HLA-B*35:01 marker. It also suggests a need for further investigation into the impact of combining turmeric with black pepper. What is not clear, is whether the researchers looked into the possibility of hepatotoxic contaminants within some of the supplements? For example, aflatoxins linked to mold on the rhizomes? Given the increased popularity of turmeric for its anti-inflammatory properties, more research should be conducted into the presence of hepatotoxic contaminants, safe dosage and the effects of long-term use on different population groups.

Do Ketogenic Diets Trigger Aging?

A new study published in Science Advances has investigated the potential downsides of ketogenic diets. While keto diets are popular for weight loss and some health conditions, this research suggests they may also trigger cellular aging in vital organs.

Key findings of the study:

  • Cellular senescence in organs: Mice fed a ketogenic diet showed signs of cellular senescence in multiple organs, including the heart and kidneys. Cellular senescence is basically when cells stop dividing and can contribute to age-related decline.
  • Mechanism behind the effect: The study identifies a potential mechanism for this cellular aging. It involves a signalling pathway triggered by AMPK (an enzyme) and caspase-2 (a protein), ultimately leading to increased p53 and p21 proteins, which are linked to cellular senescence.
  • Potential implications: The build-up of senescent cells in organs like the heart and kidneys could contribute to inflammation and organ damage. This suggests potential long-term health risks associated with long-term ketogenic diets.
  • Possible solutions: The study also offered some hope. They found that interrupting the keto diet with periods of regular eating (intermittent keto) could prevent this cellular senescence. Additionally, there are drugs being developed that target and eliminate senescent cells, which could be a future avenue for mitigating the potential downsides of keto.

Overall, the study highlights the need for a more nuanced understanding of the effects of ketogenic diets. While they may offer benefits, there could also be downsides, particularly with long-term use. As the study was conducted on mice, more research is needed to confirm these findings in humans and explore potential strategies to mitigate any risks.

Can Osteoarthritis Be Predicted?

A study published last month in Science Advances followed a group of women over an 8-year period and investigated the development of knee osteoarthritis (OA) through the lens of molecular markers in the blood. Here’s a breakdown of the key findings:

  • Early detection with biomarkers: Researchers identified a set of six protein-based markers in the blood that could predict knee OA with up to 77% accuracy, even before any damage showed up on X-rays. This suggests changes at the molecular level happen well before traditional diagnostic methods pick them up.
  • Better than traditional methods: The accuracy of these biomarkers was significantly higher compared to using factors like age, body mass index (BMI), or even reported knee pain – which are commonly used for initial OA assessment.
  • Unresolved inflammatory response: The identified markers pointed towards a prolonged inflammatory response in the joint tissues, even in the early stages of OA. This suggests that OA might be a consequence of an acute inflammatory process that doesn’t properly resolve itself.
  • A disease continuum: Interestingly, the majority of the markers that predicted the onset of OA were also useful in predicting how the disease would progress. This indicates a potential “OA continuum” where the underlying molecular mechanisms are similar throughout the development and progression of the condition.
  • Potential for monitoring: The study also pinpoints a particularly strong biomarker (CRTAC1) that could be valuable in monitoring OA severity and how it progresses. This opens doors for the development of tools to track disease course and tailor treatment plans.

Overall, the study highlights the potential of molecular biomarkers in identifying and understanding OA much earlier than traditional methods. This paves the way for earlier intervention, potentially leading to better management of this debilitating condition.

Are Microplastics A Health Concern?

An article published in Nature by science journalist Max Kozlov describes the results of a recent study that has found a potential link between microplastics and serious health issues like heart attack, stroke, and even death.

Here’s a breakdown of the key points:

  • Microplastics in Arteries: The study examined over 200 people undergoing surgery. It found that nearly 60% had microplastics, or even smaller nanoplastics, present in a major artery.
  • Increased Health Risks: Worryingly, those with microplastics were 4.5 times more likely to experience the aforementioned health problems over a three-year period compared to those without detectable microplastics.
  • Inflammation Connection: While the study doesn’t definitively prove microplastics cause these issues, it offers some clues. People with more microplastics also had higher levels of inflammatory markers. This suggests microplastics might trigger inflammation, potentially increasing the risk of plaque ruptures that block blood vessels.
  • Microplastics Everywhere: The widespread presence of plastics is a concern. From food packaging to clothes and car tires, tiny plastic fragments shed from these materials contaminate our environment and can be inhaled or ingested.

It’s important to note that this is the first study of its kind to find a link, and further research is needed to confirm a cause-and-effect relationship. However, these findings raise serious concerns about the potential health risks of microplastics.

Vagus Nerve Stimulation and Health

A New Scientist article published last year delves into the exciting potential of the vagus nerve to transform health.

The vagus nerve, the longest nerve in the body, acts as a superhighway, connecting the brain to numerous organs like the heart, lungs, and stomach. Recent research is unveiling its crucial role in regulating various bodily functions, including digestion, heart rate, and even mood.

The article emphasizes the potential benefits of a deeper understanding of the vagus nerve. Scientists are meticulously mapping its intricate anatomy to:

  • Refine Vagus Nerve Stimulation (VNS) therapy: VNS is already used for treating epilepsy and depression by sending electrical impulses to the nerve. However, a more comprehensive understanding of the nerve’s pathways could enable:
    • Targeted stimulation: This could potentially improve treatment outcomes by focusing stimulation on specific areas of the nerve responsible for the desired effect, leading to better symptom control.
    • Reduced side effects: By precisely targeting specific nerve pathways, scientists hope to minimize unintended consequences associated with VNS therapy.
  • Unlock new treatment possibilities: The vagus nerve’s influence on various bodily functions suggests its potential as a target for treating a broader spectrum of conditions, including:
    • Inflammatory diseases: The vagus nerve’s role in regulating the immune system suggests its potential as a target for treating inflammatory conditions like rheumatoid arthritis and inflammatory bowel disease.
    • Chronic pain: Studies indicate that stimulating the vagus nerve might help alleviate chronic pain by influencing pain perception pathways.
    • Neurological disorders: The vagus nerve’s connection to the brain opens exciting possibilities for treating conditions like Alzheimer’s disease, where research suggests VNS might help improve cognitive function.

The article concludes by highlighting the immense potential of the vagus nerve in revolutionizing medicine. By unlocking its secrets, scientists hope to develop new and more effective treatments for various ailments, offering a ray of hope for millions of people worldwide.

Vegan Versus Ketogenic Diets

Imagine switching up your meals in a big way, ditching meat and dairy for a vegan lifestyle or diving deep into the world of low-carb keto. What happens to your body’s defences, your trusty immune system? A recent study published in Nature Medicine delves into this very question, comparing the impacts of these two popular diets.

Key findings:

  • Both vegan and keto diets cause noticeable shifts in the types of immune cells circulating in your blood.
  • Keto: Levels of specific cells involved in “adaptive immunity” (remembering past threats) like regulatory T cells and natural killers get a boost.
  • Vegan: Cells crucial for “innate immunity” (first-line defence) like activated T helper cells and natural killers see a rise.
  • Even the genes within these cells get jiggled around! Keto ramps up genes linked to T-cell activation, while vegan leans towards genes involved in other immune responses.

What does it mean?

This is the first research to show these distinct immune system responses to vegan and keto, potentially influencing our overall health. However, keep in mind:

  • The study was small, meaning more research is needed to solidify these findings.
  • Long-term effects weren’t explored, so the lasting impact remains unclear.